Answer:
third option
Step-by-step explanation:
Answer:
Yes, there is enough evidence to say the proportions are the same.
Step-by-step explanation:
Null hypothesis: The proportions are the same.
Alternate hypothesis: The proportions are not the same.
Data given:
p1 = 51% = 0.51
n1 = 200
p2 = 48% = 0.48
n2 = 150
pooled proportion (p) = (n1p1 + n2p2) ÷ (n1 + n2) = (200×0.51 + 150×0.48) ÷ (200 + 150) = 174 ÷ 350 = 0.497
Test statistic (z) = (p1 - p2) ÷ sqrt[p(1-p)(1/n1 + 1/n2) = (0.51 - 0.48) ÷ sqrt[0.497(1-0.497)(1/200 + 1/150)] = 0.03 ÷ 0.054 = 0.556
The test is a two-tailed test. At 0.10 significance level the critical values -1.645 and 1.645
Conclusion:
Fail to reject the null hypothesis because the test statistic 0.556 falls within the region bounded by the critical values.
Ridjdjdntjfjfjfnfirjfbxjdidjdjxududuhdjxhxudufbxjdudjdhd
We solve this by the definition of slope in analytical geometry. The definition of slope is the rise over run. In equation, that would be
m = Δy/Δx = (y₂-y₁)/(x₂-x₁)
The x-coordinates here are the t values, while the y-coordinates are the f(t) values. So, let's find the y values of the boundaries.
At t=2: f(t)= 0.25(2)²<span> − 0.5(2) + 3.5 = 3.5
Point 1 is (2, 3.5)
At t=6: </span>f(t)= 0.25(6)² − 0.5(6) + 3.5 = 9.5
Point 2 is (6, 9.5)
The slope would then be
m = (9.5-3.5)/(6-2)
m = 1.5
Hence, the slope is 1.5. Interpreting the data, the rate of change between t=2 and t=6 is 1.5 thousands per year.
Answer:
The GDP gap is 9 % when there is 4.5 % unemployment.
Step-by-step explanation:
The statement shows a reverse relationship, where an increase in unemployment is following by decrease in potential GDP and can be translated into the following rate:

The GDP gap at a given increase in unemployment can be estimated by the following expression:


Where:
- GDP gap-unemployment increase rate, dimensionless.
- Increase in unemployment rate, measured in percentage.
- GDP gap, measured in percentage.
If
and
, the GDP gap is:


The GDP gap is 9 % when there is 4.5 % unemployment.