1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artemon [7]
2 years ago
8

Evaluate the integral, show all steps please!

Mathematics
1 answer:
Aloiza [94]2 years ago
4 0

Answer:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x=\dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x

Rewrite 9 as 3²  and rewrite the 3/2 exponent as square root to the power of 3:

\implies \displaystyle \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x

<u>Integration by substitution</u>

<u />

<u />\boxed{\textsf{For }\sqrt{a^2-x^2} \textsf{ use the substitution }x=a \sin \theta}

\textsf{Let }x=3 \sin \theta

\begin{aligned}\implies \sqrt{3^2-x^2} & =\sqrt{3^2-(3 \sin \theta)^2}\\ & = \sqrt{9-9 \sin^2 \theta}\\ & = \sqrt{9(1-\sin^2 \theta)}\\ & = \sqrt{9 \cos^2 \theta}\\ & = 3 \cos \theta\end{aligned}

Find the derivative of x and rewrite it so that dx is on its own:

\implies \dfrac{\text{d}x}{\text{d}\theta}=3 \cos \theta

\implies \text{d}x=3 \cos \theta\:\:\text{d}\theta

<u>Substitute</u> everything into the original integral:

\begin{aligned}\displaystyle \int \dfrac{1}{(9-x^2)^{\frac{3}{2}}}\:\:\text{d}x & = \int \dfrac{1}{\left(\sqrt{3^2-x^2}\right)^3}\:\:\text{d}x\\\\& = \int \dfrac{1}{\left(3 \cos \theta\right)^3}\:\:3 \cos \theta\:\:\text{d}\theta \\\\ & = \int \dfrac{1}{\left(3 \cos \theta\right)^2}\:\:\text{d}\theta \\\\ & =  \int \dfrac{1}{9 \cos^2 \theta} \:\: \text{d}\theta\end{aligned}

Take out the constant:

\implies \displaystyle \dfrac{1}{9} \int \dfrac{1}{\cos^2 \theta}\:\:\text{d}\theta

\textsf{Use the trigonometric identity}: \quad\sec^2 \theta=\dfrac{1}{\cos^2 \theta}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\implies \displaystyle \dfrac{1}{9} \int \sec^2 \theta\:\:\text{d}\theta = \dfrac{1}{9} \tan \theta+\text{C}

\textsf{Use the trigonometric identity}: \quad \tan \theta=\dfrac{\sin \theta}{\cos \theta}

\implies \dfrac{\sin \theta}{9 \cos \theta} +\text{C}

\textsf{Substitute back in } \sin \theta=\dfrac{x}{3}:

\implies \dfrac{x}{9(3 \cos \theta)} +\text{C}

\textsf{Substitute back in }3 \cos \theta=\sqrt{9-x^2}:

\implies \dfrac{x}{9\sqrt{9-x^2}} +\text{C}

Learn more about integration by substitution here:

brainly.com/question/28156101

brainly.com/question/28155016

You might be interested in
If (6^0)^x=1 what are the possible values of x
Monica [59]
X could equal 0 or 1
4 0
3 years ago
Help me <br>heeeeeeeeeeeeeeeeeeeeelllllllllpppp​
borishaifa [10]

Answer:

The diameter would also double

Step-by-step explanation:

3 0
3 years ago
I need to know how to do 5 &amp; 6 if someone could please help me
ehidna [41]
G and c you see look 2 times and look at the lines
8 0
3 years ago
Express 6 cups to 4 quarts as a fraction in simplest form.
natulia [17]
3/2 because you divide both by 2
8 0
2 years ago
In this diagram, if Z is the centroid of ABC and CT = 15, what is ZT? A. 5 B. 7.5 C. 10 D. 30
Kisachek [45]
The answer is A........5
3 0
3 years ago
Other questions:
  • What is the cube root of a27
    12·2 answers
  • Please help with at least 1 question. I’m really stressed
    8·2 answers
  • A logo is made up of four congruent triangles.
    6·1 answer
  • Bdjdnndndndndndkkdkdkd
    14·1 answer
  • You wonder if one's age is independent of whether or not one's willingness to wear masks in public. You ask 100 people whether t
    14·1 answer
  • Find the product<br> 0.037 · 0.26
    5·2 answers
  • Identify the transformation that occurs to create the graph of g(x). g(x)=f(x)-7
    11·1 answer
  • Ayoo someone help its kinda ✨confusing✨
    14·2 answers
  • How mathematics is involved in Merchandising?
    8·1 answer
  • On Tuesday, the Beef Market sold 400 pounds of prime rib steak at $9.98 per pound and 120 pounds of rib-eye steak at $6.49 per p
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!