Answer:
C
Step-by-step explanation:
The angle is total is 138 degrees. Part of the entire angle is already given (the 88 degree measure), so all you have to do is subtract 88 from 138, which is 50.
So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24
Law of sines says
a/sinA=b/sinB=c/SinC
where a,b,c are sides of a triangle and A,B,C are angles respectively.
a/sin45.1=c/sin59.1
(we can find angle C by sum of angles of a triangle is 180.)
a=sin(45.1) x 10.2/sin (59.1)
a=0.708 x 10.2/0.85
a=8.496
a=8.5 units
now u can find b and c sides.