Power is the rate of energy. Mathematically, it is
Power (p) = Energy(E) / Time(t)
Hope this helps!
The correct option is (b) 5n
As a result, there is a net downward force of 5N operating on the object.
The resultant force is the force that results from adding the vector sums of all the forces operating on an item. The combined action of all the acting forces on the object produces the same effect as the resulting force. When determining the resulting force, the direction of the forces must be taken into account.
Given;
The northward force is Fn = 10N
The southward force is Fs = 15N
Required;
The net force on the mobile phone is Fnet = ?N
The object's weight exerts downward pressure, and upward resistance exerts upward pressure. The vector sum of these two forces will be the net force.
Fnet = Fs - Fn (Considering the direction downward as positive)
Fnet= 15N - 10N
Fnet = 5N
As a result, there is a net downward force of 5 N operating on the object.
Learn more about the Force with the help of the given link:
brainly.com/question/7362815
#SPJ4
Req = 30.0Ω.
When two or more resistors are in series, the intensity of current that passes through each of them is the same. Therefore, if you notice, you can observe that the three previous series resistors are equivalent to a single resistance whose value is the sum of each one.
Req = R1 + R2 + R3 = 10.0Ω + 10.0Ω + 10.0Ω = 30.0Ω
Answer

Explanation

Hope this helps you.
Let me know if you have any other questions :-):-)
Explanation:
It is given that,
Mass of the box, m = 100 kg
Left rope makes an angle of 20 degrees with the vertical, and the right rope makes an angle of 40 degrees.
From the attached figure, the x and y component of forces is given by :






Let
and
is the resultant in x and y direction.


As the system is balanced the net force acting on it is 0. So,
.............(1)
..................(2)
On solving equation (1) and (2) we get:
(tension on the left rope)
(tension on the right rope)
So, the tension on the right rope is 1063.36 N. Hence, this is the required solution.