Answer:
the tension of the rope is 34.95 N
Explanation:
Given;
length of the rope, L = 3 m
mass of the rope, m = 0.105 kg
frequency of the wave, f = 40 Hz
wavelength of the wave, λ = 0.79 m
Let the tension of the rope = T
The speed of the wave is given as;
Therefore, the tension of the rope is 34.95 N
Answer:
Zero or +2
Explanation:
The noble gases already have a avplete outermost shell. They are the least reactive elements of earth?
Their normal oxidation number is zero but some have been shown to be reactive.
Answer:
Explanation:
Answer:
Explanation:
The half life is the time taken for half of a radioactive substance to disintegrate.
The shorter the half life, the larger the decay constant and the faster the decay process.
For a very large half life, it would take a very long time for the radioactive nuclide to decay to half.
With each half life reached, a new set of daughter cell is formed. Atoms that have short half life would decay rapidly. Every radionuclide has its own characteristic half-life.
If the number of half-lives increases, then the number of radioactive atoms decreases, because approximately half of the atoms' nuclei decay with each half-life. With this observation, we can hypothesise and conduct experiment to support the assertion that as the number of half-lives increases then the number of radioactive atoms decreases.
Most marine bioluminescence is blue-green, which is easier to see in the deep ocean
Explanation:
As per science, Emission and production of light by a living organism is defined as Bioluminescence. Bioluminescence occurs widely in marine animals whereas it is triggered by a physical disturbance is seen by humans, such as a moving boat hull or waves.
Throughout the water column bioluminescent organisms live and bioluminescence is extremely common in deep sea which shows that visible spectrum is more limited to marine animals than humans.
Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.