Explanation:
At the maximum height, the ball's velocity is 0.
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (12.3 m/s)² + 2(-9.80 m/s²)(x - 0 m)
x = 7.72 m
The ball reaches a maximum height of 7.72 m.
The times where the ball passes through half that height is:
x = x₀ + v₀ t + ½ at²
(7.72 m / 2) = (0 m) + (12.3 m/s) t + ½ (-9.8 m/s²) t²
3.86 = 12.3 t - 4.9 t²
4.9 t² - 12.3 t + 3.86 = 0
Using quadratic formula:
t = [ -b ± √(b² - 4ac) ] / 2a
t = [ 12.3 ± √(12.3² - 4(4.9)(3.86)) ] / 9.8
t = 0.368, 2.14
The ball reaches half the maximum height after 0.368 seconds and after 2.14 seconds.
Over the course of a long drive, as a result of alternating between braking and acceleration and of course steering, tires get heated up. When this happens, the air within the tires gets heated up, causing the air within the tire to expand. This expanding air exerts force on the tire from inside thus increasing tire pressure.
You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
6050 J is the kinetic energy at D
<u>Explanation:</u>
In physics, the object's kinetic energy (K.E) defined as the energy it possesses during movement. It can be defined as the required work to accelerate a certain body weight in order to rest at a certain speed. When the body receives this energy as it speeds up (accelerates), it retains this energy unless speed varies. The equation is given as,

Where,
m - mass of an object
v - velocity of the object
Here,
Given data:
m = 100 kg
v = 11 m/s
By substituting the given values in the above equation, we get

Answer:
are able to see/observe
Explanation:
Humans are not able to see most wavelengths in the universe--but there is a select range that is visible to our eyes. This (which is usually shown on an electromagnetic spectrum diagram/chart/depiction by a small portion of rainbow) is the visible light spectrum