Answer:
The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg
Explanation:
Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water
Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C
To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.
Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C
Latent heat of ice = L = 334000 J/kg
Specific heat capacity of water = C = 4186 J/kg.°C
Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m
Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J
543600 m = 36627.5
m = 0.0674 kg = 67.4 g of ice.
The definition of matter is physical substance in general, as distinct from mind and spirit that which occupies space and possesses rest mass, especially as distinct from energy, which basically means that matter makes up the whole Earth and everything on it. <span />
To solve this problem, we will get f and then we will use it to calculate the power.
So, for this farsighted person,
do = 25 cm and di = -80
Therefore:
1/f = (1/25) + (1/-80) = 0.00275 = 0.275 m
Power = 1/f = 1/0.275 = +3.6363 Diopeters.
This means that the lens is converging.
Answer:
Probably all but (a)
The Tyndall Effect is caused by dispersion of the incident light by the individual molecules in the liquid.
Salt water and a foggy night will cause dispersion of the incident light.
A soda drink may also cause this dispersion, but and not sure.