Answer:
please do not trust those scam links
Answer:
a)
Explanation:
- A block sliding down an inclined plane, is subject to two external forces along the slide.
- One is the component of gravity (the weight) parallel to the incline.
- If the inclined plane makes an angle θ with the horizontal, this component (projection of the downward gravity along the incline, can be written as follows:

(taking as positive the direction of the movement of the block)
- The other force, is the friction force, that adopts any value needed to meet the Newton's 2nd Law.
- When θ is so large, than the block moves downward along the incline, the friction force can be expressed as follows:
- The normal force, adopts the value needed to prevent any vertical movement through the surface of the incline:
- In equilibrium, both forces, as defined in (1), (2) and (3) must be equal in magnitude, as follows:

- As the block is moving, if the net force is 0, according to Newton's 2nd Law, the block must be moving at constant speed.
- In this condition, the friction coefficient is the kinetic one (μk), which can be calculated as follows:

Answer:
V=14.9 m/s
Explanation:
In order to solve this problem, we are going to use the formulas of parabolic motion.
The velocity X-component of the ball is given by:

The motion on the X axis is a constant velocity motion so:

The whole trajectory of the ball takes 1.48 seconds
We know that:

Knowing the X and Y components of the velocity, we can calculate its magnitude by:

Answer:
Q = 2687130 J
Explanation:
m = mass of block of ice = 5 kg
= Initial temperature of ice block = - 27 °C
= final temperature of water = 35 °C
= specific heat of ice = 2108 J/(Kg °C)
= Latent heat of fusion of ice = 334000 J/kg
= specific heat of water = 4186 J/(Kg °C)
Heat added is given as


