Answer:
d. m<ABD = 50°, m<GBC = 47°, m<EBC = 50°, and m<DBG = 83°
Step-by-step explanation:
m<ABF = 47° (given)
m<FBE = 83°
✍️m<ABD + m<ABF + m<FBE = 180° (angles on straight line)
m<ABD + 47° + 83° = 180° (substitution)
m<ABD + 130° = 180°
Subtract 130 from each side
m<ABD = 180° - 130°
✅m<ABD = 50°
✍️m<GBC = m<ABF (vertical angles)
✅m<GBC = 47° (Substitution)
✍️m<EBC = m<ABD (Vertical angles)
✅m<EBC = 50° (substitution)
✍️m<DBG = m<FBE (vertical angles)
✅m<DBG = 83° (Substitution)
Answer:
g(x) - f(x) = -14x - 3
Step-by-step explanation:
We need to subtract the function f(x) = 9x + 4 from the function g(x) = -5 + 1. Rewriting these two functions in columns, we get
g(x)= -5x+1
- f(x) = -(9x+4) Note: Use parentheses as shown here.
--------------------
g(x) - f(x) = -14x - 3
9514 1404 393
Answer:
a (3,-1)
Step-by-step explanation:
The number that "completes the square" is the square of half the x-coefficient, (-6/2)^2 = 9. Rearranging the given function to include the square trinomial, we have ...
f(x) = x^2 -6x +9 -1 . . . . . . . here, we have 8 = 9 - 1
f(x) = (x -3)^2 -1 . . . . . . . . . . vertex form
Comparing this to the generic vertex form ...
f(x) = (x -h)^2 +k . . . . . . . vertex at (h, k)
we see that h=3 and k=-1.
The vertex is (h, k) = (3, -1).