Answer:
the weakest acid is B) HIO
Explanation:
pKa = - log Ka
the higher the value of pKa, the lower the dissociation, therefore, an acid will be stronger the lower its pKa.
a) HC2H3O2; Ka = 1.8 E-5
⇒ pKa1 = - Log (1.8 E-5) = 4.745
b) HIO; Ka = 23 E-11
⇒ pKa2 = - Log ( 23 E-11 ) = 9.638
c) HBrO; Ka = 23 E-9
⇒ pKa3 = - Log ( 23 E-9 ) = 7.638
d) HClO; Ka = 2.9 E-8
⇒ pKa4 = - Log ( 2.9 E-8 ) = 7.537
e) HCO2H; Ka = 63 E-5
⇒ pKa5 = - Log ( 63 E-5 ) = 3.200
from the values pKa, we places the acids from the weakest to the least weak:
1) pKa2; HIO (weakest)
2) pKa3
3) pKa4
4) pKa1
5) pKa5
Answer: 0.745 g of
will be produced from 1.08 g of sodium sulfate
Explanation:
To calculate the moles :
is the limiting reagent as it limits the formation of product and
is the excess reagent.
According to stoichiometry :
3 moles of
produce = 3 moles of
Thus 0.0076 moles of
will require=
of
Mass of
Thus 0.745 g of
will be produced from 1.08 g of sodium sulfate
2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
The reaction of 2-bromo-3,4-dimethylpentane is combined with t-butoxide forms 2 alkene in the elimination reaction due to steric hindrance. The least stable alkene 3,4 dimethyl - 1- pentene is easy to make. the t-butoxide is (CH₃)₃CO⁻. The reaction involves in this reaction is E2 elimination reaction. This reaction involves the one step reaction. The product will also form that is 3,4 dimethyl - 2 - pentene. so the reaction involve Elimination reaction and the product due to steric hindrance is 3,4 dimethyl - 1- pentene
Thus, 2-bromo-3,4-dimethylpentane is combined with t-butoxide. The product of this reaction is 3,4 dimethyl - 1- pentene.
To learn more about t-butoxide here
brainly.com/question/12303978
#SPJ4
1. Dry Ice (solid carbon dioxide)
2. Iodine
3. Arsenic
4. Naphthalene
The energy transformations are similar because they result into radiant energy.
As for the lamp, Electrical energy is transformed into light when the filament
or mercury vapor glows on passage of current.
The fire- chemical energy is turned to light energy during the combustion of carbon. Both products comprise of ultraviolet radiation which is a form of radiant energy.