Answer:
Muscular dystrophy (MD) is a group of inherited diseases in which the muscles that control movement (called voluntary muscles) progressively weaken. In some forms of this disease, the heart and other organs are also affected. There are nine major forms of muscular dystrophy: Myotonic.
In most cases, muscular dystrophy (MD) runs in families. It usually develops after inheriting a faulty gene from one or both parents. MD is caused by mutations (alterations) in the genes responsible for healthy muscle structure and function.
Explanation:
does this help
Answer:
1) A = 0.25 m², 2) V = 0.5 m³, 3) m = 1500 kg, 4) W = 14700 N,
5) P = 58800 Pa
Explanation:
1) The area of the base is square
A = L²
A = 0.5²
A = 0.25 m²
2) The block is a parallelepiped
V = A h
V = 0.25 2
V = 0.5 m³
3) Density is defined
rho = m / V
m = rho V
m = 3000 0.5
m = 1500 kg
4) The weight of a body is
W = mg
W = 1500 9.8
W = 14700 N
5) The pressure is
P = F / A
in this case the force is equal to the weight of the body
P = 14700 / 0.25
P = 58800 Pa
Answer:
I believe its called the periosteum , its a thin , dense membrane that contains nerves and blood vessels .
Hoped I helped-
Sleepy~
Answer : The change in enthalpy of the reaction is, -310 kJ
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given main reaction is,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

Now we will reverse the reaction 1 and multiply reaction 1 by 2, reaction 2 by 2 and reaction 3 by 3 then adding all the equations, we get :
(1)

(2)

(3)

The expression for enthalpy of formation of
will be,



Therefore, the change in enthalpy of the reaction is, -310 kJ