Answer:
3) Ep = 13243.5[J]
4) v = 17.15 [m/s]
Explanation:
3) In order to solve this problem, we must use the principle of energy conservation. That is, the energy will be transformed from potential energy to kinetic energy. We can calculate the potential energy with the mass and height data, as shown below.
m = mass = 90 [kg]
h = elevation = 15 [m]
Potential energy is defined as the product of mass by gravity by height.
![E_{p}=m*g*h\\E_{p}=90*9.81*15\\E_{p}=13243.5[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5CE_%7Bp%7D%3D90%2A9.81%2A15%5C%5CE_%7Bp%7D%3D13243.5%5BJ%5D)
This energy will be transformed into kinetic energy.
Ek = 13243.5 [J]
4) The velocity can be determined by defining the kinetic energy, as shown below.
![E_{k}=\frac{1}{2} *m*v^{2} \\v = \sqrt{\frac{2*E_{k} }{m} }\\ v= \sqrt{\frac{2*13243.5 }{90} }\\v=17.15[m/s]](https://tex.z-dn.net/?f=E_%7Bk%7D%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B2%2AE_%7Bk%7D%20%7D%7Bm%7D%20%7D%5C%5C%20v%3D%20%5Csqrt%7B%5Cfrac%7B2%2A13243.5%20%7D%7B90%7D%20%7D%5C%5Cv%3D17.15%5Bm%2Fs%5D)
The specific heat of water is 4.186.
The number of significant digits to the answer of the following problem is four.
<h3>What are the significant digits?</h3>
The number of digits rounded to the approximate integer values are called the significant digits.
The following problem is
(2.49303 g) * (2.59 g) / (7.492 g) =
On solving we get
= 0.86184566204
The answer is approximated to 0.86185
Thus, the significant digits must be four.
Learn more about significant digits.
brainly.com/question/1658998
#SPJ1
<span>Wedges is your answer please mark brainliest </span>
Answer:
Explanation:
Let the angle between the first polariser and the second polariser axis is θ.
By using of law of Malus
(a)
Let the intensity of light coming out from the first polariser is I'
.... (1)
Now the angle between the transmission axis of the second and the third polariser is 90 - θ. Let the intensity of light coming out from the third polariser is I''.
By the law of Malus

So,



(b)
Now differentiate with respect to θ.

