Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ
F = 750 N (Force)
d = 10 m (displacement
)
t = 25 s (time)
L = ? (Mechanical work
) = (Energy)
P = ? (Power)
Solve:
L = F × d = 750 × 10 = 7500 Joules
P = L / t = 7500 / 25 = 300 Watts
Answer:
When same-sized team members are placed on each side of the rope, the sizes of the arrows on both sides remain the same.
Explanation:
This is the answer on Plato
Answer:
The angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Explanation:
Given that,
Potential difference, V = 53 mV
Length of the wire, l = 12 cm = 0.12 m
Magnetic field, B = 0.27 T
Speed of the wire, v = 5 m/s
Due to its motion, an emf is induced in the wire. It is given by :

Here,
is the angle between magnetic field and the wire’s velocity

So, the angle between the magnetic field and the wire’s velocity is 19.08 degrees.
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier