Water behaves as a base in this reaction.
The Bronsted-Lowry definition is applied, because the reaction involves the transfer of H+ from one reactant to the other.
A Bronsted-Lowry base is defined as a substance that accepts a proton.
Because water gains a proton to form H3O+ in this particular reaction, it acts as a base
When’s I would like to say that it may be B because
CH=benzene
Why?
benzene is represented by the empirical formula CH, which indicates that a typical sample of the compound contains one atom of carbon (C) to one atom of hydrogen (H).
----(<em>Is</em><em> </em><em>this</em><em> </em><em>what</em><em> </em><em>you</em><em> </em><em>meant</em><em>?</em><em>?</em><em>?</em><em>)</em>
Answer:
0.55 mol Au₂S₃
Explanation:
Normally, we would need a balanced equation with masses, moles, and molar masses, but we can get by with a partial equation, if the S atoms are balanced.
1. Gather all the information in one place:
M_r: 34.08
Au₂S₃ + … ⟶ 3H₂S + …
m/g: 56
2. Calculate the moles of H₂S
Moles of H₂S = 56 g H₂S × (34.08 g H₂S/1 mol H₂S)
= 1.64 mol H₂S
3. Calculate the moles of Au₂S₃
The molar ratio is 1 mol Au₂S₃/3 mol H₂S.
Moles of Au₂S₃ = 1.64 mol H₂S × (1 mol Au₂S₃/3 mol H₂S)
= 0.55 mol Au₂S₃