Answer:
<em>The SUV is running at 70 km/h</em>
Step-by-step explanation:
<u>Speed As Rate Of Change
</u>
The speed can be understood as the rate of change of the distance in time. When the distance increases with time, the speed is positive and vice-versa. The instantaneous rate of change of the distance allows us to find the speed as a function of time.
This is the situation. A police car is 0.6 Km above the intersection and is approaching it at 60 km/h. Since the distance is decreasing, this speed is negative. On the other side, the SUV is 0.8 km east of intersection running from the police. The distance is increasing, so the speed should be positive. The distance traveled by the police car (y) and the distance traveled by the SUV (x) form a right triangle whose hypotenuse is the distance between them (d). We have:

To find the instant speeds, we need to compute the derivative of d respect to the time (t). Since d,x, and y depend on time, we apply the chain rule as follows:

Where x' is the speed of the SUV and y' is the speed of the police car (y'=-60 km/h)
We'll compute :


We know d'=20 km/h, so we can solve for x' and find the speed of the SUV

Thus we have

Solving for x'

Since y'=-60


The SUV is running at 70 km/h
Let x be a random variable representing the number of skateboards produced
a.) P(x ≤ 20,555) = P(z ≤ (20,555 - 20,500)/55) = P(z ≤ 1) = 0.84134 = 84.1%
b.) P(x ≥ 20,610) = P(z ≥ (20,610 - 20,500)/55) = P(z ≥ 2) = 1 - P(z < 2) = 1 - 0.97725 = 0.02275 = 2.3%
c.) P(x ≤ 20,445) = P(z ≤ (20,445 - 20,500)/55) = P(z ≤ -1) = 1 - P(z ≤ 1) = 1 - 0.84134 = 0.15866 = 15.9%
Answer:
B
Step-by-step explanation:
If he hits the target 95% of the time, then you could say that he has a probability of 0.95, or 95% of hitting the target. Let p = the probability of hitting the target or p = 0.95. So you are interested that he misses the target at least once - this could be thought of as not getting a perfect score. So to get a perfect score, it is 0.95 for each target -- 0.95^15 for 15 targets is 0.464. Thus to miss at least one target he needs to NOT have a perfect score -- 1 - 0.464 = 0.536, or 53.6% of happening. Enjoy

Let's called the input 'z'
When we plug 'z' in the function we get ;

And we know that, this is equal to 19, so ;

Let's rearrange the equation.

So we have a quadratic equation here.
We'll use this formula to solve it :

The formula is used in equation formed like this :

In our equation,
a=2 , b=3 and c=-14
Let's plug in the values in the formula to solve,

So,

So the input can be both, 2 and