1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
2 years ago
5

If a car driving down the road doubles its speed what happens to its kinetic energy?

Physics
1 answer:
ivanzaharov [21]2 years ago
7 0

Answer:

Kinetic energy doubles

You might be interested in
How much energy is needed to generate 0.71 x 10-16 kg of mass?
AleksAgata [21]

Answer:

6.39 J of energy is needed to generate 0.71 * 10⁻¹⁶ kg mass

Explanation:

According to the Equation: E = mc²

where the mass, m = 0.71 * 10⁻¹⁶ kg

the speed of light, c = 3 * 10⁸ m/s

The amount of energy needed to generate a mass of 0.71 * 10⁻¹⁶ kg is calculated as follows:

E = (0.71 * 10⁻¹⁶) (3 * 10⁸)²

E = 0.71 * 10⁻¹⁶ * 9 * 10¹⁶

E = 0.71 * 9

E = 6.39 J

6 0
3 years ago
A 60KG WOMAN IS ON A LADDER 2 M ABOVE THE GROUND. WHAT IS HER POTENTIAL ENERGY
dexar [7]

Answer:

Explanation:

PE = mgh = 60(9.8)(2.0) = 1176 J

7 0
2 years ago
44. A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down
Vladimir [108]

Answer:

18.4 m

Explanation:

(a)

The known variables in this problem are:

u = 1.40 m/s is the initial vertical velocity (we take downward direction as positive direction)

t = 1.8 s is the duration of the fall

a = g = 9.8 m/s^2 is the acceleration due to gravity

(b)

The vertical distance covered by the life preserver is given by

d=ut + \frac{1}{2}at^2

If we substitute all the values listed in part (a), we find

d=(1.40 m/s)(1.8 s)+\frac{1}{2}(9.8 m/s^2)(1.8 s)^2=18.4m

8 0
3 years ago
What was an ill effect of the industrial revolution?
Digiron [165]

Answer:

answer is option (c) child labour

6 0
3 years ago
Each driver has mass 79.0 kg. Including the masses of the drivers, the total masses of the vehicles are 800 kg for the car and 4
Mademuasel [1]

Answer:

Force exerted on the car driver by the seatbelt = 8139.4 N = 8.14 kN

Force exerted on the truck driver by the seatbelt = 1628.2 N = 1.63 kN

It is evident that the driver of the smaller vehicle has it worse. The car driver is in way more danger in this perfectly inelastic head-on collision with a bigger vehicle (the truck).

Explanation:

First of, we calculate the velocity of the vehicles after collision using the law of conservation of Momentum

Momentum before collision = Momentum after collision

Since the collision of the two vehicles was described as a head-on collision, for the sake of consistent convention, we will take the direction of the velocity of the bigger vehicle (the truck) as the positive direction and the direction of the car's velocity automatically is the negative direction.

Velocity of the truck before collision = 6.80 m/s

Velocity of the car before collision = -6.80 m/s

Let the velocity of the inelastic unit of vehicles after collision be v

Momentum before collision = (4000)(6.80) + (800)(-6.80) = 27200 - 5440 = 21,760 kgm/s

Momentum after collision = (4000 + 800)(v) = (4800v) kgm/s

Momentum before collision = Momentum after collision

21760 = 4800v

v = (21760/4800)

v = 4.533 m/s (in the direction of the big vehicle (the truck)

So, we then apply Newton's second law of motion which explains that the magnitude change in momentum is equal to the magnitude of impulse.

|Impulse| = |Change in momentum|

But Impulse = (Force exerted on each driver by the seatbelt) × (collision time) = (F×t)

Change in momentum = (Momentum after collision) - (Momentum before collision)

So, for the driver of the truck

Initial velocity = 6.80 m/s (the driver moves with the velocity of the truck)

Final velocity = 4.533 m/s

Change in momentum of the truck driver = (79)(6.80) - (79)(4.533) = 179.1 kgm/s

(F×t) = 179.1

F × 0.110 = 179.1

F = (179.1/0.11)

F = 1628.2 N = 1.63 kN

So, for the driver of the car

Initial velocity = -6.80 m/s (the driver moves with the velocity of the car)

Final velocity = 4.533 m/s

Change in momentum of the car driver = (79)(-6.80) - (79)(4.533) = -895.3 kgm/s

(F×t) = |-895.3|

F × 0.110 = 895.3

F = (895.3/0.11)

F = 8139.4 N = 8.14 kN

Hope this Helps!!!

3 0
3 years ago
Other questions:
  • Suppose the lift force on the plane in the diagram below was larger than the force of gravity. Which of the following statements
    5·1 answer
  • A ball is dropped from a height of 10 meters how long was the ball in the air and what is the speed when it hits the ground
    9·1 answer
  • A certain string can withstand a maximum tension of 39. N without breaking. A child ties a 0.43 kg stone to one end and, holding
    10·1 answer
  • Two planes leave wichita at noon. one plane flies east 30 mi/h faster than the other plane, which is flying west. at what time w
    14·1 answer
  • A ball with a weight of 0.5 N is submerged under water and then released. There is a net force of 5 N upwards. what is the buoya
    11·1 answer
  • I need help plz and thank you❤
    13·1 answer
  • Which example best represents translational kinetic energy? A plucked string guitar. The moving blades of a ceiling fan. A spinn
    7·2 answers
  • Which contributes most to our average dose of background radiation?
    6·1 answer
  • A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves o
    5·1 answer
  • *example of previous incorrect/correct answer on similar question) Inside a vacuum tube, an electron is in the presence of a uni
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!