1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naya [18.7K]
3 years ago
8

Why does the evaporation of sweat cool down your skin?

Physics
2 answers:
Ne4ueva [31]3 years ago
6 0
So sweat<span> helps </span>cool<span> you </span>down<span> two ways. First, it makes </span>your skin<span> feel cooler when it's wet. And when it </span>evaporates<span> it removes some heat. But </span>sweat<span> will only </span>evaporato<span>in an environment where there isn't much water in the air.</span>
Sergeu [11.5K]3 years ago
4 0
It removes the heat on your skin
You might be interested in
A plane coming in to land at a busy airport is asked to circle the airport until the air traffic congestion eases off. The pilot
Ber [7]

Answer:

The solution is given in the picture attached below

Explanation:

8 0
3 years ago
What is the differ of fermentation from respirstion
Andrej [43]
This may help u... :P

8 0
4 years ago
The surface is tilted to an angle of 37 degrees from the horizontal, as shown above in Figure 3. The blocks are each given a pus
hoa [83]

Answer:

Incomplete question: "Each block has a mass of 0.2 kg"

The speed of the two-block system's center of mass just before the blocks collide is 2.9489 m/s

Explanation:

Given data:

θ = angle of the surface = 37°

m = mass of each block = 0.2 kg

v = speed = 0.35 m/s

t = time to collision = 0.5 s

Question: What is the speed of the two-block system's center of mass just before the blocks collide, vf = ?

Change in momentum:

delta(P)=F*delta(t)

P_{f} -P_{i}=F*delta(t)

2m(v_{f} -v_{i})=F*delta(t)

v_{i} =0.35-0.35=0

It is neccesary calculate the force:

F=(m+m)*g*sin\theta

Here, g = gravity = 9.8 m/s²

F=(0.2+0.2)*9.8*sin37=2.3591N

v_{f} =\frac{F*delta(t)}{2m} =\frac{2.3591*0.5}{2*0.2} =2.9489m/s

6 0
3 years ago
A hot (70°C) lump of metal has a mass of 250 g and a specific heat of 0.25 cal/g⋅°C. John drops the metal into a 500-g calorimet
Gnom [1K]

Answer:

d. 37 °C

Explanation:

m_{m} = mass of lump of metal = 250 g

c_{m} = specific heat of lump of metal  = 0.25 cal/g°C

T_{mi} = Initial temperature of lump of metal = 70 °C

m_{w} = mass of water = 75 g

c_{w} = specific heat of water = 1 cal/g°C

T_{wi} = Initial temperature of water = 20 °C

m_{c} = mass of calorimeter  = 500 g

c_{c} = specific heat of calorimeter = 0.10 cal/g°C

T_{ci} = Initial temperature of calorimeter = 20 °C

T_{f} = Final equilibrium temperature

Using conservation of heat

Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

m_{m} c_{m} (T_{mi} - T_{f}) = m_{w} c_{w} (T_{f} - T_{wi}) +  m_{c} c_{c} (T_{f} - T_{ci}) \\(250) (0.25) (70 - T_{f} ) = (75) (1) (T_{f} - 20) + (500) (0.10) (T_{f} - 20)\\T_{f} = 37 C

6 0
3 years ago
A car engine supplies 2.0 x 103 joules of energy during the 10. seconds it takes to accelerate the car along a horizontal surfac
andrew11 [14]

Answer: 2. 2.0*10^2 W

Explanation:

Power = Work/Time

Power = (2.0*10^3) Joules/10 seconds

Power = 2.0*10^2 Watts

7 0
3 years ago
Other questions:
  • A book is thrown downward from the library window with a speed of 2.0\,\dfrac{\text m}{\text s}2.0 s m ​ 2, point, 0, start frac
    5·2 answers
  • When the current in a coil flows in anti-clockwise direction, what pole does it create?​
    10·1 answer
  • Which of the following examples does not illustrate Newton's first law of motion?
    6·1 answer
  • How are particles in different state of matter?
    14·2 answers
  • What is potential energy? Give at least three examples, and explain why they have potential energy.
    7·2 answers
  • Archerfish are tropical fish that hunt by shooting drops of water from their mouths at insects above the waterÂs surface to knoc
    9·2 answers
  • Define a combination circuit.
    12·1 answer
  • Which scientist discovered the laws that determine the motion of a spring?
    9·1 answer
  • 1. A meter rule is found to balance at the 48cm mark. When a body of mass 60g is suspended at the 6cm mark the balance point is
    14·1 answer
  • The figure shows the electric field inside a cylinder of radius R= 3.2 mm. The field strength is increasing with time as E= 1.4
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!