
Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An object moving with constant speed can be accelerated if direction of motion changes. For example, an object moving with a constant speed in a circular path has an acceleration because its direction of motion changes continuously.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this Helps . . . . . . . . .
Answer:
47.4 m
Explanation:
When an object is thrown upward, it rises up, it reaches its maximum height, and then it goes down. The time at which it reaches its maximum height is half the total time of flight.
In this case, the time of flight is 6.22 s, so the time the ball takes to reach the maximum height is

Now we consider only the downward motion of the ball: it is a free fall motion, so we can find the vertical displacement by using the suvat equation

where
s is the vertical displacement
u = 0 is the initial velocity
t = 3.11 s is the time
is the acceleration of gravity (taking downward as positive direction)
Solving the formula, we find

The moment of inertia of a point mass about an arbitrary point is given by:
I = mr²
I is the moment of inertia
m is the mass
r is the distance between the arbitrary point and the point mass
The center of mass of the system is located halfway between the 2 inner masses, therefore two masses lie ℓ/2 away from the center and the outer two masses lie 3ℓ/2 away from the center.
The total moment of inertia of the system is the sum of the moments of each mass, i.e.
I = ∑mr²
The moment of inertia of each of the two inner masses is
I = m(ℓ/2)² = mℓ²/4
The moment of inertia of each of the two outer masses is
I = m(3ℓ/2)² = 9mℓ²/4
The total moment of inertia of the system is
I = 2[mℓ²/4]+2[9mℓ²/4]
I = mℓ²/2+9mℓ²/2
I = 10mℓ²/2
I = 5mℓ²
Answer:
0.37 m
Explanation:
The angular frequency, ω, of a loaded spring is related to the period, T, by

The maximum velocity of the oscillation occurs at the equilibrium point and is given by

A is the amplitude or maximum displacement from the equilibrium.

From the the question, T = 0.58 and A = 25 cm = 0.25 m. Taking π as 3.142,

To determine the height we reached, we consider the beginning of the vertical motion as the equilibrium point with velocity, v. Since it is against gravity, acceleration of gravity is negative. At maximum height, the final velocity is 0 m/s. We use the equation

is the final velocity,
is the initial velocity (same as v above), a is acceleration of gravity and h is the height.


Answer:
1.603 s
Explanation:
Given that
Initial mass, = 0.45 kg
Initial period, = 1.45 s
Initial radius, = 0.14 m
Final mass, = 0.55 kg
Final period, = ?
Final radios, = 0.14 m
Since we are finding the rotation period of two masses of same radius, we can assume that the outward force is the same in both cases. This means that
m₁r₁ω₁² = m₂r₂ω2²
Where, ω = 2π/T, on substituting, we have
0.45 * 0.14 * (2π / 1.45)² = 0.550 * 0.14 * (2π / T₂)²
0.45 / 1.45² = 0.550 / T₂²
T₂² = 0.550 * 1.45² / 0.45
T₂² = 2.56972
T₂ = √2.56972
T₂ = 1.603 sec