<span>Example Problems. Kinetic Energy (KE = ½ m v2). 1) The velocity of a car is 65 m/s and its mass is 2515 kg. What is its KE? 2) If a 30 kg child were running at a rate of 9.9 m/s, what is his KE? Practice Problems. IN THIS ORDER…. Page 2: #s 6, 7, 8, 5. Potential Energy. An object can store energy as the result of its position.</span><span>
</span>
Type of conductors determines rate of flow of current
Answer:
See explanation
Explanation:
We have to convert to angular velocity in rads-1 as follows;
Angular velocity in rad/s = 2π/60 × 1900 rpm = 199 rad/s
Given that
angular velocity =angle turned /time taken
Time taken = angle turned/angular velocity
Converting 35° to radians we have;
35 × π/180 = 0.61 radians
Time taken = 0.61 radians/199 rad/s
Time taken = 0.0031 seconds
Answer:
24.57 revolutions
Explanation:
(a) If they do not slip on the pavement, then the angular acceleration is

(b) We can use the following equation of motion to find out the angle traveled by the wheel before coming to rest:

where v = 0 m/s is the final angular velocity of the wheel when it stops,
= 95rad/s is the initial angular velocity of the wheel,
is the deceleration of the wheel, and
is the angle swept in rad, which we care looking for:



As each revolution equals to 2π, the total revolution it makes before stop is
154.375 / 2π = 24.57 revolutions
Answer:
D
Explanation:
because if the solvent is more than the solvent then we can't resolve it.
so our product will be suspended