Answer: only the VSEPR mode shows the geometric shape of a formula.
The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.
2. it becomes a liquid
4. its molecules lose energy
The change in state is due to the loss of energy.
Answer:
Q = 1455.12 Joules.
Explanation:
Given the following data;
Mass = 300 grams
Initial temperature = 22.3
Final temperature = 59.9°C
Specific heat capacity = 0.129 J/gºC.
To find the quantity of energy;
Where,
Q represents the heat capacity.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt represents the change in temperature.
dt = T2 - T1
dt = 59.9 - 22.3
dt = 37.6°C
Substituting the values into the equation, we have;
Q = 1455.12 Joules.