1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
2 years ago
5

Find where the sequence converges

Mathematics
2 answers:
soldier1979 [14.2K]2 years ago
8 0

We can also apply l'Hôpital's rule by first rewriting the limit as

\displaystyle \lim_{k\to\infty} \left(1 + \frac4k\right)^k = \lim_{k\to\infty} \exp\left(\ln \left(1 + \frac4k\right)^k\right) = \exp\left(\lim_{k\to\infty} \frac{\ln\left(1+\frac4k\right)}{\frac1k}\right)

Applying the rule gives

\displaystyle \lim_{k\to\infty} \frac{\ln\left(1+\frac4k\right)}{\frac1k} = \lim_{k\to\infty} \frac{\left(-\frac4{k^2}\right)/\left(1+\frac4k\right)}{-\frac1{k^2}} = 4 \lim_{k\to\infty} \frac1{1 + 4k} = 4

so that the overall limit is

\displaystyle \lim_{k\to\infty} \left(1 + \frac4k\right)^k = \lim_{k\to\infty} \exp(4) = \boxed{e^4}

avanturin [10]2 years ago
3 0

Answer:  \\ \lim\limits_{k \to \infty} (1+\frac{4}{k})^k =e^4.

Step-by-step explanation:

\displaystyle\\ \lim_{k \to \infty} (1+\frac{4}{k})^k  \\x=\frac{x}{4} *4\\So,\  \lim_{k \to \infty} (1+\frac{4}{k})^\frac{k}{4}*4 \\ \lim_{k \to \infty} ((1+\frac{4}{k})^\frac{k}{4} )^4.\\Use\  the\  second\  wonderful\  limit:\\\boxed { \lim_{x \to \infty} (1+\frac{1}{x})^x=e  },\\\\So,\\ \lim_{k \to \infty} (1+\frac{4}{k})^k =e^4.

You might be interested in
Which expression is equivalent to −1/4x+1/2 ?
Scorpion4ik [409]

Answer:

idkidkidkidkidkidkidk

Step-by-step explanation:

6 0
3 years ago
Solve for r.<br> -1r + 1 &gt; 7
Alexeev081 [22]

Answer:

r < − 6

Step-by-step explanation:

7 0
3 years ago
If G^-1(x) is the inverse of G(x), what is the value of G^-1(G(x))?
Ber [7]

Answer:

G^{-1}(G(x))=x

Step-by-step explanation:

Definition: Let f be one-to-one function with the domain A and  the range B. Then the inverse function f^{-1} has the domain B and the range A and is defined as

f^{-1}(y)=x\ \Leftrightarrow \ f(x)=y

Facts:

1) For every x\in A:

f^{-1}(f(x))=x

2) For every y\in B:

f(f^{-1}(y))=y

So, G^{-1}(G(x))=x

5 0
4 years ago
Solve for m: 8(m+5)=16 ?
Alika [10]
8(m+5)=16
8m+40=16
8m=24
m=3
8 0
3 years ago
Read 2 more answers
7. Which of these statements is true?
Mice21 [21]

Answer:

A. because 5 < 6. 1-(-4)=5. and 4-(-2) =6

3 0
2 years ago
Other questions:
  • A certain kind of animal weighs about 75 pounds at birth and gains about 2 pounds per day for the first few weeks. Determine tho
    9·1 answer
  • Write an expression that can be used to multiply 6x198 mentally
    9·1 answer
  • Is 11 1/2 divided by 2 1/4 equals 6 and overestimate or underestimate. Explain
    12·1 answer
  • 1/2 (t+8) = 3/4t what's the answer?
    10·2 answers
  • Machine M, working alone at its constant rate, produces x widgets every 4 minutes. Machine N, working alone at its constant rate
    7·1 answer
  • Need help will give brainlisit 12
    13·1 answer
  • There is a bag with only milk and dark chocolates. The probability of randomly choosing a dark chocolate is 5/12. There are 40 d
    13·1 answer
  • Here is another problem, thank you guys so much:)
    14·2 answers
  • Convert 123 into quinary number .​
    11·1 answer
  • (-11)-8+(-7)-(-14)<br> Answer
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!