Answer:
(5a - [2b - 7c]) and (5a + [2b + 7c])
Step-by-step explanation:
Factor 25a^2 - 4b^2 + 28bc - 49c^2.
Note that - 4b^2 + 28bc - 49c^2 involves the variables b and c, whereas 25a^2 has only one variable. Thus, try to rewrite - 4b^2 + 28bc - 49c^2 as the square of a binomial:
- 4b^2 + 28bc - 49c^2 = -(4b^2 - 28bc + 49c^2), or
-(2b - 7c)^2.
Thus, the original 25a^2 - 4b^2 + 28bc - 49c^2 looks like:
[5a]^2 - [2b - 7c]^2
Recall that a^2 - b^2 is a special product, the product of (a + b) and (a - b). Applying this pattern to the problem at hand, we conclude:
Thus, [5a]^2 - [2b - 7c]^2 has the factors (5a - [2b - 7c]) and (5a + [2b + 7c])
The domain is the set of all x values which are defined (appear on the graph) of the function. In this system, all values from negative infinity to 0, but not including zero, and all values above zero, through positive infinity, are valid. We can write this in set builder notation as x: (-∞,0)∪(0,∞).
The range is the set of all y values which are defined in the function. Like the domain, the range of this function contains all value from negative infinity to positive infinity except zero. Same notation: y: : (-∞,0)∪(0,∞).
The answer is they all have a factor of 9
Sorry I’m not sure but I’ll try and help- lemme just add it to a different comment