bearing in mind that standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
![\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-2}{2-(-3)}\implies \cfrac{1-2}{2+3}\implies -\cfrac{1}{5} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=-\cfrac{1}{5}[x-(-3)]\implies y-2=-\cfrac{1}{5}(x+3)](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%20%5C%5C%5C%5C%5C%5C%20slope%20%3D%20m%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%7B%20y_2-%20y_1%7D%7D%7B%5Cstackrel%7Brun%7D%7B%20x_2-%20x_1%7D%7D%5Cimplies%20%5Ccfrac%7B1-2%7D%7B2-%28-3%29%7D%5Cimplies%20%5Ccfrac%7B1-2%7D%7B2%2B3%7D%5Cimplies%20-%5Ccfrac%7B1%7D%7B5%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-2%3D-%5Ccfrac%7B1%7D%7B5%7D%5Bx-%28-3%29%5D%5Cimplies%20y-2%3D-%5Ccfrac%7B1%7D%7B5%7D%28x%2B3%29)

Answer:
![52 \sqrt[5]{7}](https://tex.z-dn.net/?f=52%20%5Csqrt%5B5%5D%7B7%7D%20)
Step-by-step explanation:

![= 52 \sqrt[5]{7}](https://tex.z-dn.net/?f=%20%3D%2052%20%5Csqrt%5B5%5D%7B7%7D%20)
Hi,
if growth continue to the same rate, meaning +25% more every year, then B is the answer :
100 (1.25)^t
Given the statement, "If

is odd, then

is odd," its contrapositive claims that, "If

is not odd, then

is not odd."
So assume

is not odd, i.e.

is even. This means there is an integer

for which

. Squaring this gives

.
Well, we can write

, and

is just another integer, which means

must be even.