1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svet-max [94.6K]
2 years ago
9

An envelope contains $1.20 in dimes and nickels. if the dimes were quarters and the nickels were dimes, there would be $1.35 mor

e in the envelope. How many nickels are in the envelope?
Mathematics
1 answer:
balu736 [363]2 years ago
7 0

The nickels in the envelope is $0. 12

<h3>How to determine the number</h3>

From the information given, we have that;

Dimes + nickels = $1. 20

1/4 dimes + dimes = $ 1. 35

Let dimes = d

Nickels = n

d + n = 1. 20    equation a

d/4 + d = 1. 35   equation b

Make 'd' subject from equation a

d = 1. 20 - n

Substitute into equation b

1. 20 - n/ 4 + 1. 20 - n = 1. 35

0. 3 - 0. 25n + 1. 20 - n = 1. 35

collect like terms

- 1. 25n = 1. 35 - 1. 5

- 1. 25 = - 0. 15

n = -0. 15/ -1. 25

n = 0. 12

Thus, the number of nickels in the envelope is $0. 12

Learn more about algebraic expressions here:

brainly.com/question/4344214

#SPJ1

You might be interested in
Please help me find the total area of the composite figure below (geometry)
Akimi4 [234]

Answer:

lw + \frac{1}{2} × π × (\frac{l}{2} )^{2} ⇒ Answer D is correct

Step-by-step explanation:

First, let us find the area of the semi-circle.

Area = \frac{1}{2} × π × r²

<u>Given that,</u>

diameter of the semi-circle is ⇒ <em>l</em>

∴ radius ⇒ <em>l / 2</em>

<u>Let us find it now.</u>

Area = \frac{1}{2} × π × r²

Area =  \frac{1}{2} × π × (\frac{l}{2} )^{2}

<u>                                                     </u>

Secondly, let us find the area of the rectangle.

Area = length × width

<u>Given that,</u>

length ⇒ <em>l</em>

width ⇒ w

<u>Let us find it now.</u>

Area = length × width

Area = l ×w

Area = lw

<u>                                                      </u>

And now let us <u>find the total area.</u>

Total area =  Area of the rectangle + Area of the semi - circle

Tota area = lw + \frac{1}{2} × π × (\frac{l}{2} )^{2}

8 0
2 years ago
A product can be made in sizes huge, average and tiny which yield a net unit profit of $14, $10, and$5, respectively. Three cent
navik [9.2K]

Answer:

The model is:

z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃    to maximize

Subject to:

First center               X₁₁  +  X₂₁  + X₃₁  ≤  550

Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750

Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275                  

22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000

22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700

22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400

X₁₁  +  X₁₂  + X₁₃  ≤  710

X₂₁  + X₂₂ + X₂₃  ≤  900

X₃₁ + X₃₂ + X₃₃  ≤  350

2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0

3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0

Xij >= 0

Step-by-step explanation:

Let´s call Xij   product size i produced in center j

According to this, we get the following set of variable

X₁₁    product size huge produced in center 1

X₁₂    product size huge produced in center 2

X₁₃   product size huge produced in center 3

X₂₁   product size average produced in center 1

X₂₂   product size average produced in center 2

X₂₃   product size average produced in center 3

X₃₁  product size-tiny produced in center 1

X₃₂ product size-tiny produced in center 2

X₃₃ product size-tiny produced in center 3

Then Objective function is

z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃

Constrains

Center capacity

1.-   First center               X₁₁  +  X₂₁  + X₃₁  ≤  550

2.-   Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750

3.- Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275

Water available

1.-  22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000

2.-  22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700

3.-   22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400

Demand constrain

Product huge

X₁₁  +  X₁₂  + X₁₃  ≤  710

Product average

X₂₁  + X₂₂ + X₂₃  ≤  900

Product tiny

X₃₁ + X₃₂ + X₃₃  ≤  350

Fraction SP/CC must be the same

First and second centers  fraction SP/CC  

(X₁₁  +  X ₂₁  + X₃₁)/ 11000   =  (X₁₂ + X₂₂ + X₃₂)/ 2700

2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0

First and third centers  fraction SP/CC  

(X₁₁  +  X ₂₁  + X₃₁)/ 11000   = ( X₁₃ + X₂₃ + X₃₃)/ 3400

3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0

The model is:

z = 14* X₁₁ + 14*X₁₂ + 5*X₁₃ + 10*X₂₁ + 10*X₂₂ + 10*X₂₃ + 5*X₃₁ + 5*X₃₂ + 5*X₃₃

Subject to:

First center               X₁₁  +  X₂₁  + X₃₁  ≤  550

Second center         X₁₂  +  X₂₂  + X₃₂  ≤ 750

Third center               X₁₃  + X₂₃  + X₃₃  ≤ 275                  

22* X₁₁  + 16* X₂₁  + 9*X₃₁     ≤   11000

22* X₁₂  + 16* X₂₂  + 9*X₃₂   ≤   2700

22*X₁₃  + 16* X₂₃  +  9*X₃₃  ≤  3400

X₁₁  +  X₁₂  + X₁₃  ≤  710

X₂₁  + X₂₂ + X₂₃  ≤  900

X₃₁ + X₃₂ + X₃₃  ≤  350

2700*(X₁₁  +  X ₂₁  + X₃₁)  -  11000*(X₁₂ + X₂₂ + X₃₂) = 0

3400*(X₁₁  +  X ₂₁  + X₃₁) - 11000*( ( X₁₃ + X₂₃ + X₃₃) = 0

Xij >= 0

6 0
2 years ago
Suppose you drive a car 392 mi on a tank of gas. The tank holds 14 gallons. The number of miles traveled vaties directly with th
Serhud [2]

Preliminary Problem

Givens

Miles = m = 392 miles

Gallons =  G = 14 gallons

Miles per gallon = mpg

Formula

miles = miles per gallon * number of gallons.

Solve

392 = mpg * 14                         Divide by 14

392 / 14 = mpg

28 = mpg  which is really quite good.  Our vehicle gets 44 mpg but it's a 4 cylinder. It's meant to get that kind of milage.

Part A

Let x = the number of gallons used

Let y = the number of miles driven

y = k*x

Part B

y = k* x

k =28 mpg

11700 = 28*x

11700 /28 = x

x = 417.86

If this is incorrect please put some more facts in. The question does not seem complete.


7 0
3 years ago
What is 11,339,800 to the nearest whole number
Bas_tet [7]
11,339,800 is 11,340,000 rounded to the nearest whole number
4 0
2 years ago
Read 2 more answers
Write an expression that can be used to find 4x275
vovikov84 [41]
2(200+75) That would be one expression that can be used to find that.
3 0
2 years ago
Other questions:
  • Write expressions in simplest form that represents the total amount in each situation
    8·1 answer
  • Help ! and please explain it (: ​
    10·1 answer
  • If R(x) and S(x) are inverse functions, which statement must be true? A) R(S(X))=1 B) R(S(X))=X C) R(X) R(X)= 1/S(x) D) R(x)=-S(
    7·2 answers
  • Nikita calculated the volume of the right triangular prism. Her work is shown below. A triangular prism. The triangular base has
    6·2 answers
  • Historically, making a quilt was an opportunity for communities to come together and socialize with one another. Is there a mode
    5·1 answer
  • HELPPPPPPPPPP!!!!!!!!!!
    13·1 answer
  • How many orders of magnitude bigger is 23,000 than 56?
    9·1 answer
  • G(b) = 5b- 9<br> h(b) = (b - 1)^2<br> Evaluate.<br> (hog)(-6) =
    5·1 answer
  • If a &lt; b then ka &lt; kb
    14·1 answer
  • Hey there! BRAINLIEST! Lol, because I have no life whatsoever, but um if your on this question. Thank you. Please help me out! I
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!