Answer:
Question 1: the plates are moving toward one another.
Question 2: The Himalayan Mountains in India
Question 3: Because mountains are formed instead.
Explanation:
The paragraph explains that the plates continue to move closer to one another while forming multiple mountains.
The paragraph explains, " a well-known example of this is the formation of the Himalayan Mountains in India,"
The area of the Himalayan Mountains are better suited for the formation of mountains rather than volcanoes.
Have a nice day!! Good Luck!! Brainliest would be appreciated!!!
Answer:
1) The net electric field at any location inside a block of copper is zero if the copper block is in equilibrium.
2) In equilibrium, there is no net flow of mobile charged particles inside a conductor.
3) If the net electric field at a particular location inside a piece of metal is not zero, the metal is not in equilibrium.
Explanation:
1) and 3) A block of copper is a conductor. The charged particles on a conductor in equilibrium are at rest, so the intensity of the electric field at all interior points of the conductor is zero, otherwise, the charges would move resulting in an electric current.
2) The charged particles on a conductor in equilibrium are at rest.
Answer:
Solar and nuclear power generate more than 99 percent of our civilization's energy. Every other important source of energy is a combination of these two. The majority of them are solar in nature. We discharge previously collected solar energy when we burn wood.
and
Nuclear energy, fossil energy (oil, coal, and natural gas), and renewable energy (wind, solar, geothermal, and hydropower) are all examples of primary energy sources.
Explanation:
The object takes 0.5 seconds to complete one rotation, so its rotational speed is 1/0.5 rot/s = 2 rot/s.
Convert this to linear speed; for each rotation, the object travels a distance equal to the circumference of its path, or 2<em>π</em> (1.2 m) = 2.4<em>π</em> m ≈ 7.5 m, so that
2 rot/s = (2 rot/s) • (2.4<em>π</em> m/rot) = 4.8<em>π</em> m/s ≈ 15 m/s
thus giving it a centripetal acceleration of
<em>a</em> = (4.8<em>π</em> m/s)² / (1.2 m) ≈ 190 m/s².
Then the tension in the rope is
<em>T</em> = (50 kg) <em>a</em> ≈ 9500 N.
Answer:
B
Explanation:
The impulse experienced by an object is the force•time.