Answer:
(a) Workdone = -27601.9J
(b) Average required power = 1314.4W
Explanation:
Mass of hoop,m =40kg
Radius of hoop, r=0.810m
Initial angular velocity Winitial=438rev/min
Wfinal=0
t= 21.0s
Rotation inertia of the hoop around its central axis I= mr²
I= 40 ×0.810²
I=26.24kg.m²
The change in kinetic energy =K. E final - K. E initail
Change in K. E =1/2I(Wfinal² -Winitial²)
Change in K. E = 1/2 ×26.24[0-(438×2π/60)²]
Change in K. E= -27601.9J
(a) Change in Kinetic energy = Workdone
W= 27601.9J( since work is done on hook)
(b) average required power = W/t
=27601.9/21 =1314.4W
Permanent magnet. An induced magnet would be created when a piece of iron (for example) is in contact with a magnet. Temporary magnets would be something like an electromagnet. Bar magnets are permanently magnetic unless we heat them or hammer them to cause their domains to loose alignment.
The power expended is 500 W
Explanation:
First of all, we start by calculating the work done by the man in order to ascend: this is equal to the gravitational potential energy gained by the man, which is

where
m = 50 kg is the mass of the man
is the acceleration of gravity
is the change in height
Substituting,

Now we can calculate the power expended, which is given by

where
W = 2500 J is the work done
t = 5 s is the time elapsed
Substituting, we find

Learn more about power:
brainly.com/question/7956557
#LearnwithBrainly
Slower cooling engenders the growth of larger crystals in igneous rocks, thus, your answer should be slow cooling!
Hope this helped!