Answer:
86.3 g of N₂ are in the room
Explanation:
First of all we need the pressure from the N₂ in order to apply the Ideal Gases Law and determine, the moles of gas that are contained in the room.
We apply the mole fraction:
Mole fraction N₂ = N₂ pressure / Total pressure
0.78 . 1 atm = 0.78 atm → N₂ pressure
Room temperature → 20°C → 20°C + 273 = 293K
Let's replace data: 0.78 atm . 95L = n . 0.082 . 293K
(0.78 atm . 95L) /0.082 . 293K = n
3.08 moles = n
Let's convert the moles to mass → 3.08 mol . 28g /1mol = 86.3 g
Tarnish is Ag2S-silver sulfide and the oxidation state of silver is +1
Answer:
<em>The number of electrons transferred in the reaction</em>
Explanation:
Answer:
Before "true" labor begins, you might have "false" labor pains, also known as Braxton Hicks contractions.
Explanation:
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay (-decay), beta decay (-decay), and gamma decay (-decay), all of which involve emitting one or more particles or photons. The weak force is the mechanism that is responsible for beta decay, while the other two are governed by the usual electromagnetic and strong forces.[1]