Explanation:
Beryllium is a group 2 element and its atomic number is 4. Electronic configuration of beryllium is
.
Since, a beryllium contains two valence electrons so, in order to attain stability it will readily lose its 2 valence electrons.
Therefore, a beryllium atom upon losing two valence electrons will acquire a +2 charge.
Thus, we can conclude that the net ion charge of Beryllium is +2.
In order of relative atomic mass.
Answer:
16 g/mol
Explanation:
In CO2, it means we have 1 mole of carbon and 2 moles of oxygen.
However, we want to find the molar mass of just a single mole of oxygen.
Now, from tables of values of elements in electronic configuration, the molar mass of oxygen is usually approximately 16 g/mol.
In essence the molar mass is simply the atomic mass in g/mol
Answer:
C
Explanation:
The law proves C. For examples no matter how water you have it will always have a 1:2 ratio of oxygen to hydrogen. :)
Answer:
Groups 14, 15, and 16 have 2,3, and 4 electrons in the p sublevel (p sublevel has 3 "spaces" AKA orbitals), because Hunds says one in each orbital before doubling up if you had 2 electrons, group 14, they would both be in the first orbital, with 3 electrons, group 15, two in the first orbital one in the 2nd none in the 3rd. With 4 electrons, group 16, then you would have 2 in the first 2 orbitals and NONE in the 3rd.
Explanation:
If you are in group 13 you only have 1 electron so it can only be in one orbital. with group 17, you have 5 electrons, so 2 in the first 2 in the second and 1 in the 3rd, correct for Hunds rule anyway. Noble gasses, group 18, have 6 elecctrons, so every orbital is full any way you look at it.