<u>Answer:</u> The for the reaction is -1406.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical reaction for the formation reaction of is:
The intermediate balanced chemical reaction are:
(1) ( × 6)
(2) ( × 3)
(3) ( × 2)
(4)
The expression for enthalpy of formation of is,
Putting values in above equation, we get:
Hence, the for the reaction is -1406.8 kJ.
C. Their components can be separated by physical processes.
Answer: According to the Bohr model, atoms emit light because excited electrons are returning to lower energy states, emitting the energy difference. This energy always has a specific wavelength because the electrons can only exist in set orbits. ... An emission spectrum is the frequencies of light emitted from an atom.
Explanation:
Answer:
31.5 mL of a 2.50M NaOH solution
Explanation:
Molarity (M) is an unit of concentration defined as moles of solute (In this case, NaOH), per liter of solvent. That is:
Molarity = moles solute / Liter solvent
If you want to make 525mL (0.525L) of a 0.150M of NaOH, you need:
0.525L × (0.150mol / L) = <em>0.07875 moles of NaOH</em>
<em />
If you want to obtain these moles from a 2.50M NaOH solution:
0.07875mol NaOH × (1L / 2.50M) = 0.0315L = <em>31.5 mL of a 2.50M NaOH solution</em>
Answer:
2.2 moles H2O
Explanation:
, which rounds to about 2.2