(I leave off the x10^23 because they both will divide out) Use your per
On the off chance that one of the reactants is in overabundance yet you don't know which one it is, you have to compute the hypothetical item mass for the both reactants, with a similar item, and whichever has the lower yield is the one you use to precisely depict masses/sums for the condition, since you can't have more than the non-abundance reactant can create.
<h3><u>Answer;</u></h3>
Find the number of 1-foot cubes that fill the fish tank
<h3><u>Explanation;</u></h3>
Volume of a cuboid such as the fish tank is given by the product of length width and height;
Such that; Volume = length × width × height
Similarly, we can count the number of 1 foot cube that can fill the fish tank.
And since each cube has a volume of 1 cubic ft, then the number of cubes will be equivalent to the volume of the fish tank in cubic ft.
Answer:
2.57 e-9
Explanation:
The formula is H3O=10^-Ph
10^-8.59=2.57 e-9
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!