Answer:
The required work done is 
Explanation:
Consider 'F' is the applied force on the crate and 'f' be the force created by friction. According to the figure if '
' be the coefficient of friction, then

where 'M', 'N' and 'g' are the mass of the crate, the normal force aced upon the block and the acceleration due to gravity respectively.
Since the application of force by the movers does not create any acceleration to the block, we can write

So the work done (W) in moving the crate by a distance s = 10.6 m is

Answer:
Explanation:
First we need to determine the distance covered during deceleration. According to the equation of motion.
S = ut+1/2at²
Given:
u = 20m/s
t = 0.50s
a = -10m/s (deceleration is negative acceleration)
S = 20²+1/2(-10)(0.5)²
S = 400-5(0.5)²
S = 400-5(0.25)
S = 400-1.25
S = 398.75m
If the deer steps onto the road 35m in front of you, the distance between you and the deer when you come to a stop will be 398.75-35 = 363.75m
The Electromagnetic spectrum.
Answer:
Explanation:
Comment
You have to read this carefully enough that you don't mix up energy and forces.
Gravity is a force. If you don't believe me try jumping off a building. Which way are you going to go and why? Down because gravity attracts your mass.
So Magnetism must be a force as well. It acts in one direction, but not a specific one the way gravity acts). It also either attracts or repulses (pushes an object away)
Answer A
100N describes the weight of the sandbag, while 100kg is the mass of the sandbag.
To calculate acceleration, divide your weight by the mass, thus the accleration is: