1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
12

10. when creating a cardiovascular fitness routine which program would be appropriate?

Physics
1 answer:
sasho [114]3 years ago
5 0

Answer:

10. B

13. It's actually 30 seconds but 20 comes closest so B

14. B, any type of stretching is good before you perform any type of physical activity because it loosens up the muscles

15. D, all of the above

Explanation:

I have done many sports in my life and am still very active, I grew to know most of these things through the years.

You might be interested in
The Hubble Space Telescope is stabilized to within an angle of about 2-millionths of a degree by means of a series of gyroscopes
Likurg_2 [28]

Answer:

The answer to the question is;

The required torque that it would take to cause the gyroscopes to precess through an angle of 1.0×10−6 degree during a 5.0-hour exposure of a galaxy is 2.44 ×10⁻¹² N·m  

Explanation:

To solve the question we first resolve the units of the given quantities as follows

The gyroscopes spin at 19,200 rpm that is 19,200 revolutions per minute

1 revolution = 2π rad and

1 minute = 60 seconds

Therefore 19,200 revolutions per minute = 2π×19,200÷60 rad/s

= 2010.619 rad/s

The angle of precess is given as 1.0×10⁻⁶ °. We convert the angle to radians as follows

360 ° = 2π radians

1 ° = \frac{\pi }{180} radians and

1.0×10⁻⁶ ° =  \frac{\pi }{180} radians × 1.0×10⁻⁶ ° = 1.745×10⁻⁸ rad

To find the torque we note that the torque is given by

Precession angular speed × The moment of inertia × angular velocity

The precession angular speed is given by \frac{Precession. Angle}{time}

The precession angle was determined in rad as 1.745×10⁻⁸ rad

The precession time is 5 hours which is equal to 5×60×60 = 18000 s

Therefore the precession velocity = \frac{1.745*10^{-8} rad}{18000 s} =  9.696×10⁻¹³ rad/s

The moment of inertia is given by

Formula for the moment of inertia of a thin walled cylinder I = m·r²

Where:

r = Radius of the gyroscope = Diameter/2 = 5.0 cm/2 = 2.5 cm = ‪0.025‬ m

m = Mass of each gyroscopes = 2.0 kg

Therefore I = m·r² = 2.0 kg × (0.025‬ m)² = 0.00125 kg·m²

Torque, τ = Ω·I·ω

Where:

Ω = Precession velocity = 9.696×10⁻¹³ rad/s

I = Moment of inertia = 0.00125 kg·m²

ω = Angular speed = 2010.619 rad/s

τ = 9.696×10⁻¹³ rad/s × 0.00125 kg·m² × 2010.619 rad/s =

2.44 ×10⁻¹² kg·m²/ s² =   2.44 ×10⁻¹² N·m  

The required torque is 2.44 ×10⁻¹² N·m.

7 0
3 years ago
A satellite is in circular orbit at an altitude of 1500 km above the surface of a nonrotating planet with an orbital speed of 9.
Ksju [112]

To solve this problem we will use the Newtonian theory about the speed of a body in space for which the speed of a body in the orbit of a planet is summarized as:

v =  \sqrt{\frac{2GM}{R}}

Where,

G = Gravitational Universal Constant

M = Mass of Planet

r = Radius of the planet ('h' would be the orbit from the surface)

The escape velocity is

v = 14.9km/h = 14900m/s

Through this equation we can find the mass of the Planet in function of the distance, therefore

M = \frac{v^2R}{2G}

M = \frac{14900^2R}{2(6.67*10^{-11})}

M = 16.64*10^{17}R

The orbital velocity is

v_o = \sqrt{\frac{GM}{R+h}}

9200^2 = \frac{(6.67*10^{-11})(16.64*10^{17})R}{R+1500*10^3}

11.1*10^7R = (R+15000*10^3)(9200)^2

2.64*10^7R = 12.69*10^{13}

R = 4.81*10^6m

The time period of revolution is,

T = \frac{2\pi(R+h)}{v_o}

T = \frac{2\pi(4.81*10^6+1.5*10^6)}{9200}

T = 4307s

T = 72min = 1hour12min

Therefore the orbital period of the satellite is closes to 1 hour and 12 min

3 0
3 years ago
Given the isotope 2Fes, which has an actual mass of 55.934939 u: a) b) Determine the mass defect of the nucleus in atomic mass u
SSSSS [86.1K]

Answer:

Mass defect of each iron-56 nuclei:

The binding energy per nucleon of Iron-56 is approximately 8.6 MeV.

Explanation:

According to the physics constants table on Chemistry Libretexts:

  • Proton rest mass: \rm 1.0072765\;amu;
  • Neutron rest mass: \rm 1.0086649\; amu.
  • Speed of light in vacuum: \rm 2.99792458\times 10^{8}\;m\cdot s^{-1}.
  • Charge on an electron: \rm 1.6021765\times 10^{-19}\;C.

<h3>a)</h3>

The mass defect of a nucleus is equal to the sum of the mass of its parts (protons and, in most cases, neutrons) minus the mass of the nucleus.

The atomic number of iron is 26. There are 26 protons in each iron-56 nucleus. The mass number 56 indicates that there are 56 nucleons (neutrons and protons) in each iron-56 nucleus. The other 56 - 26 = 30 particles are neutrons.

The mass of protons and neutrons in each iron-56 nucleus will be:

\rm 26 \times 1.0072765 + 30 \times 1.0086649 = 56.464736\;amu.

According to this question, the mass of an iron-56 nucleus is equal to 55.934939 amu. The mass defect will be

\rm 56.464736 - 55.934939 = 0.514197\;amu.

<h3>b)</h3>

By the mass-energy equivalence,

E = m\cdot c^{2}.

Refer to this equation, the speed of light in vacuum c^{2} is the conversion factor between mass m and energy E. The value of c is usually given only in SI units \rm m\cdot s^{-1}. Accordingly, the value of c^{2} will be in the SI unit \rm m^{2}\cdot s^{-2} = J\cdot kg^{-1}.

Convert million electron-volts to joules.

One electron-volt is equal to the electrical work done moving an electron across a potential difference of one volt.  

\begin{aligned}\rm 1 MeV&= \rm 10^{6}\; eV\\ &= \rm (10^{6}\times 1.6021765\times 10^{-19}\;C)\times 1\; V\\&=\rm 1.6021765\times 10^{-19}\;J\end{aligned}.

Convert the unit of c^{2} from \rm m^{2}\cdot s^{-2} = J\cdot kg^{-1} to the desired \rm MeV \cdot amu^{-1}:

\begin{aligned}c^{2} &= \rm {\left(2.99792458\times 10^{8}\;m\cdot s^{-1}\right)}^{2}\\&=\rm 8.987551787\times 10^{16}\; m^{2}\cdot s^{-2}\\ &= \rm 8.987551787\times 10^{16}\; J\cdot kg^{-1}\\&= \rm 8.987551787\times 10^{16}\; J\cdot kg^{-1}\times \frac{1\;MeV}{1.6021765\times 10^{-13}\;J}\times \frac{1\times 10^{-3}\;kg}{6.022142\times 10^{23}\;amu}\\&\approx \rm 931.602164\;MeV\cdot amu^{-1}\end{aligned}.

Total binding energy in each iron-56 nucleus:

\begin{aligned}E &= m\cdot c^{2}\\&= \rm 0.514197\;amu \times 9.31602164\;MeV\cdot amu^{-1} \\&=\rm 479.027038\; MeV \end{aligned}.

Again, the mass number 56 indicates that there are 56 nucleons in each iron-56 nucleus. The binding energy per nucleon of iron-56 \mathrm{^{56}Fe} will be:

\displaystyle \rm \frac{479.027038\; MeV}{56} \approx 8.6\; MeV.

6 0
3 years ago
Pe=___
Nesterboy [21]

Answer:

H = start height (v = 0)

h = present height

v = present speed

assuming no friction

total energy = PE + KE

mgH = mgh + .5mv^2

if PE = KE then

mgH = mgh + mgh

h = H/2

potential energy = kinetic energy when object is at half its start height.

Explanation:

8 0
3 years ago
A projectile is fired horizontally from a height of 78.4 m at a speed of 300 m/sec. How far did it travel horizontally before hi
Mice21 [21]

Answer:

Explanation:

Using the formula for calculating range expressed as;

R = U√2H/g

U is the speed = 300m/s

H is the maximum height = 78.4m

g is the acceleration due to gravity = 9.8m/s²

Substitute into the fromula;

R = 300√2(78.4)/9.8

R = 300 √(16)

R = 300*4

R = 1200m

Hence the projectile travelled 1200m before hitting the ground

3 0
3 years ago
Other questions:
  • Please help me with 1 and 2
    6·1 answer
  • Create a piece of evidence showing the relationship between potential and kinetic energy You MUST include the following words: p
    7·1 answer
  • A solid disk of mass m1 = 9.3 kg and radius R = 0.22 m is rotating with a constant angular velocity of ω = 31 rad/s. A thin rect
    10·1 answer
  • Before the widespread use of computers, how was the epicenter of an earthquake determined?
    14·2 answers
  • A 50 kg ball traveling at 20 m/s would have______ kinetic energy
    12·1 answer
  • Mac and Tosh are arguing in the cafeteria. Mac says that if he flings the Jell-O with a greater speed it will have a greater ine
    13·1 answer
  • What is the percentage increase IN kinetic energy(K.E) ,If the momentum(p) of a moving body is increase by 10%?And How? (If K.E=
    15·1 answer
  • How does earth's orbit affect climate change? Contrast a circular orbit to elliptical (oval) orbit. Give two opposite extreme cl
    8·1 answer
  • A laser pointer is placed on a platform that rotates at a rate of 60 revolutions per minute. The beam hits a wall 10 m away, pro
    15·1 answer
  • What is the speed of a car that travels a distance of 60 meters in a time of 10 seconds
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!