Answer:
2210.91 N
Explanation:
f = v/∧ = 1/2 √ T/ μ
where f= 28.1 Hz , T= tension ,
L= 2m
mass density = μ = 350÷1000/2.00
= 0.175kg/m
from f = 1/2L √ T/ μ
make T the subject of the formula
T= (f×2L)² ₓ μ
T= (28.1×2×2)² ×0.175
T=12633.76×0.175
=2210.91 N
d = distance between the two point charges = 60 cm = 0.60 m
r = distance of the location of point "a" where the electric field is zero from charge
between the two charges.
= magnitude of charge on one charge
= magnitude of charge on other charge
= 3 
= Electric field by charge
at point "a"
= Electric field by charge
at point "a"
Electric field by charge
at point "a" is given as
= k
/r²
Electric field by charge
at point "a" is given as
= k
/(d-r)²
For the electric field to be zero at point "a"
=
k
/(d-r)² = k
/r²
/(d-r)² = 3
/r²
1/(0.60 - r)² = 3 /r²
r = 0.38 m
r = 38 cm
Answer:
2025000 J
Explanation:
The formula for kinetic energy is KE=.5(m)(v²).
The initial kinetic energy is 0 because it is at rest. .5(m)(0) = 0.
To calculate the final kinetic energy, use the kinetic energy equation. KE = .5(2000)(45²) = 2025000 J.
To find the change in kinetic energy, you do KE(f) - KE(i). 2025000-0 = 2025000 J.
Answer:
2.74
Explanation:
Magnification = image distance/object distance
Mag = v/u
Given
v = 46cm
u = 16.8
Magnification = 46/16.8
Magnification = 2.74
Hence the magnification is 2.74