1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
2 years ago
14

What quantities can be calculated from the bohr equation for the energy levels of the hydrogen atom?

Physics
1 answer:
patriot [66]2 years ago
6 0

We can find the energy needed to ionize the hydrogen atom.

We can find the wavelength of a spectral line.

We can find the energy change of the electron moving between two levels.

The first atomic model to adequately explain the radiation spectra of atomic hydrogen was Bohr's model of the hydrogen atom. The atomic Hydrogen model was first presented by Niels Bohr in 1913. Rutherford's model of the hydrogen atom leaves several holes, which Bohr's model of the hydrogen atom tries to fill in.

It has a particular place in history since it introduced the quantum theory, which led to the development of quantum mechanics. Bohr proposed that electrons moved in predetermined orbits or shells with defined radii around the nucleus. It was impossible for electrons to reside between any shells other than those having a radius given by the equation below.

r (n) =n^{2} * r(1)

E (n) = \frac{1}{n^{2} } 13.6eV

Learn more about hydrogen atom here;

brainly.com/question/8806577

#SPJ4

You might be interested in
you have been called to testify as a as an expert witness in a trial involving a head-on collision Car A weighs 1515 pounds and
GrogVix [38]

Answer:

70.6 mph

Explanation:

Car A mass= 1515 lb

Car B mass=1125 lb  

Speed of car B is 46 miles/h

Distance before locking, d=19.5 ft

Coefficient of kinetic friction is 0.75

Initial momentum of car B=mv where m is mass and v is velocity in ft/s  

46 mph*1.46667=67.4666668 ft/s

Momentum_B=1125*67.4666668 ft/s

Initial momentum of car A is given by

Momentum_A=1515v_a where v_a is velocity of A

Taking East as positive and west as negative then the sum of initial momentum is

1515v_a-(1125*67.4666668 ft/s)

The common velocity is represented as v_c hence after collision, the final momentum is

Momentum_final=(m_a+m_b)v_c=(1515+1125)v_c=2640v_c

From the law of conservation of linear momentum, sum of initial and final momentum equals each other hence

1515v_a-(1125*67.4666668 ft/s)= 2640v_c

The acceleration of two cars a=-\mug=-0.75*32.17=-24.1275 ft/s^{2}

From kinematic equation

v^{2}=u^{2}+2as hence

v^{2}-u^{2}=2as

0^{2}-(v_c)^{2}=2*-24.1275*19.5

v_c=\sqrt{2*24.1275*19.5}=30.67 ft/s

Substituting the value of v_c in equation 1515v_a-(1125*67.4666668 ft/s)= 2640v_c

1515v_a-(1125*67.4666668 ft/s)= 2640*30.67

1515v_a=(1125*67.4666668 ft/s)+2640*30.67

v_a=\frac {156868.8}{1515}=103.5438 ft/s

\frac {103.5438}{1.46667}=70.59787 mph\approx 70.60 mph

3 0
3 years ago
When measuring current, always place any type of meter in
Mars2501 [29]
     In series with the circuit, so for it pass the current to be mensured.

Letter A

If you notice any mistake in my english, please let me know, because i am not native.
5 0
2 years ago
Read 2 more answers
A machine that operates a ride at the fair requires 2500 J to lift a 294 N child 5.0 m. What is the efficiency of this machine?
NeX [460]

Answer:

η = 58.8%

Explanation:

Work is defined as the force applied by the distance traveled by the body.

W =F*d

where:

W = work [J] (units of joules)

F = force = 294 [N]

d = distance = 5 [m]

W = 294*5\\W = 1470 [J]\\

Efficiency is defined as the energy required to perform an activity in relation to the energy actually added to perform some activity. This can be better understood by means of the following equation.

efficiency = W_{done}/W_{required}\\efficiency = 1470/2500\\efficiency = 0.588 = 58.8%

5 0
3 years ago
A resistor is connected in series with an AC source that provides a sinusoidal voltage of v of t is equal to V times cosine of b
nekit [7.7K]
<h2>Answer:</h2>

In circuits, the average power is defined as the average of the instantaneous power  over one period. The instantaneous power can be found as:

p(t)=v(t)i(t)

So the average power is:

P=\frac{1}{T}\intop_{0}^{T}p(t)dt

But:

v(t)=v_{m}cos(\omega t) \\ \\ i(t)=i_{m}cos(\omega t)

So:

P=\frac{1}{T}\intop_{0}^{T}v_{m}cos(\omega t)i_{m}cos(\omega t)dt \\ \\ P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}cos^{2}(\omega t)dt \\ \\ But: cos^{2}(\omega t)=\frac{1+cos(2\omega t)}{2}

P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}

In terms of RMS values:

V_{RMS}=V=\frac{v_{m}}{\sqrt{2}} \\ \\ I_{RMS}=I=\frac{i_{m}}{\sqrt{2}} \\ \\ Then: \\ \\ P=VI

7 0
3 years ago
A tennis player swings her 1000 g racket with a speed of 11 m/s. She hits a 60 g tennis ball that was approaching her at a speed
shusha [124]

Answer:

- 3.72 Ns.

9.44 m/s

Explanation:

mass of racket, M = 1000 g = 1 kg

mass of ball, m = 60 g = 0.06 kg

initial velocity of racket, U = 11 m/s

initial velocity of ball, u = 18 m/s

final velocity of ball, v = - 44 m/s

Let the final velocity of the racket is V.

(a) Momentum is defined as the product of mass and velocity of the ball.

initial momentum of the ball = m x u = 0.06 x 18 = 1.08 Ns

Final momentum of the ball = m x v = 0.06 x (- 44) = - 2.64 Ns

Change in momentum of the ball = final momentum - initial momentum

                                                        = - 2.64 - 1.08 = - 3.72 Ns

Thus, the change in momentum of the ball is - 3.72 Ns.

(b) By use of conservation of momentum

initial momentum of racket and ball = final momentum of racket and ball

1 x 11 + 0.06 x 18 =  1 x V - 0.06 x 44

12.08 = V - 2.64

V = 9.44 m/s

Thus, the final velocity of the racket afetr the impact is 9.44 m/s .

3 0
3 years ago
Other questions:
  • What occurs when a swimmer pushes through the water to swim?
    5·2 answers
  • if weight is the force of gravity on an object, then your weight can change if the force of gravity is different on a different
    9·1 answer
  • A purse at radius 2.0 m and a wallet at radius 2.3 m travel in uniform circular motion on the floor of a merry-go-round as the r
    10·1 answer
  • Just how strong is the electric force? suppose you had two small boxes, each containing 1.0 g of protons. (a) if one were placed
    9·1 answer
  • A transport truck pulls on a trailer with a force of 600N [E]. The trailer pulls on the transport truck with a force
    12·2 answers
  • Name two objects that have a high density.
    12·1 answer
  • What is the best approximate value for the elastic potential energy (EPE) of the spring elongated by 3.0 meters?
    8·1 answer
  • Which of the following equations represents Ohm’s Law? Select all that apply.
    6·2 answers
  • Calculate the density of mercury if 500 cm3
    15·1 answer
  • As the bell rings, which energy transformation occurs? A. Mechanical energy is converted into sound energy. B. Chemical energy i
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!