Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d
The flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.
<h3>How we compare the flow of electricity to water?</h3>
Water flowing in pipes is like flowing of electricity in a circuit. A battery is like a pump from where electricity comes and moves in the circuit. Electrons flowing through wires are like water molecules flowing through pipes. So in comparison between water and electricity, both water and electricity are similar to each other in flowing and movement.
So we can conclude that the flow of electricity can be compared of water in the pipes because both water and electricity moves in the channel.
Learn more about electricity here: brainly.com/question/776932
#SPJ1
<span>The velocity will be 41.25 m/s2 after 9 seconds. To find velocity after a specific time period, multiply the acceleration (2.75) times the number of seconds (9) to receive 24.75 m/s, then add that to the initial velocity of 16.5 m/s. 24.75 + 16.5 = 41.25 m/s2.</span>
Answer:

Explanation:
<u>Sum of Vectors in the Plane</u>
Given two vectors

They can be expressed in their rectangular components as


The sum of both vectors can be done by adding individually its components

If the vectors are given as a magnitude and an angle
, each component can be found as


The first vector has a magnitude of 3.14 m and an angle of 30°, so


The second vector has a magnitude of 2.71 m and an angle of -60°, so


The sum of the vectors is


Finally, we compute the magnitude of the sum



Both matter and light have been demonstrated to exhibit wave-like and particle-like behavior.
Light as a wave: light can diffract & refract
Light as a particle: photoelectric effect, Compton scattering
Matter as a wave: Davisson-Germer experiment
Matter as a particle: find a picture of any kinematics problem in a high school physics textbook
Choice D