I'll assume that the chair has four legs.
Since the chair weights 3.7 kg by itself, it will weigh (79+3.7)=82.7 kg with the person sitting on it. And each of the chair's legs will take about (82.7/4)=20.675 kg.
Each leg touches the floor in a circle with 1.3cm diameter. The area of that circle is about (3.14*(1.3/2)^2)=1.327 cm^2.
Pressure is measured by force per area. So, the pressure from each leg is about 20.675kg / 1.327cm^2. That simplifies to 15.58 kg/cm^2.
Answer:
The answer is B
Explanation:
The absorption happens when photons from light hit atoms and molecules, and they vibrate because of that specific interaction. Then the heat ejects from the object in the format of thermal energy.
Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
True: Friction depends on the types of surfaces involved and how hard the surfaces push together.
When you are in free fall, the force of gravity is stronger than your velocity perpendicular to where you're falling, and you move at a constant speed downwards.
Under feelings of weightlessness, you are still being pulled by gravity, but your perpendicular velocity and distance from the source can cancel each other out.