Answer:
Number of Significant Figures: 2
The Significant Figures are 3 6
Explanation:
= 3.60 × 102
(scientific notation)
= 3.60e2
(scientific e notation)
= 360 × 100
(engineering notation)
(one)
= 360
(real number)
German physicist Albert Betz (in 1919) demonstrated that the highest efficiency you can achieve with a wind turbine is around 59%
We would have to analyze the design of an specific turbine to determine its efficiency, however it is unlikely to achieve 50% , as todays turbines have an average efficiency in the 20-35%
The answer would be around 25%
The average radius(r) of each grain is r = 50 nanometers
= 50*10^-6 meters
Since it is spherical, so
Volume=(4/3)*pi*r^3
V= (4/3)*pi*(50*10^-6)^3
V=5.23599*10^-13 m^3
We are given the Density(ρ) =2600kg/m^3
We know that:
Density(p) = mass(m)/volume(V)
m = ρV
So the mass of a single grain is:
m = 5.23599*10^-13 * 2600 = 1.361357*10^-9 kg
The surface area of a grain is:
a = 4*pi*r^2
a = 4*pi*(50*10^-6)^2
a = 3.14*10^-8 m^2
Since we know the surface area and mass of a grain, the
conversion factor is:
1.361357*10^-9 kg / 3.14*10^-8 m^2
Find the Surface area of the cube:
cube = 6a^2
cube = 6*1.1^2 = 7.26m^2
multiply this by the converions ratio to get:
total mass of sand grains = (7.26 m^2 * 1.361357*10^-9 kg)
/ (3.14*10^-8 m^2)
total mass of sand grains = 0.3148 kg = 314.80 g
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:
Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,
Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:
Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is
Replacing we have that,
Therefore there is a loss of fluid in the container of 0.475L
Answer:
Explanation:
Check attachment for solution