Answer:
The answer is "
"
Explanation:
In point i:


If error in the theoretical time period
:



In point ii:

<h3>

</h3>
Answer:
<h2>45 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 15 × 3
We have the final answer as
<h3>45 N</h3>
Hope this helps you
Answer:
Explanation:
340 m/s / 968 cyc/s = 0.3512396... ≈ 35.1 cm
This electric force calculator will enable you to determine the repulsive or attractive force between two static charged particles. Continue reading to get a better understanding of Coulomb's law, the conditions of its validity, and the physical interpretation of the obtained result.
How to use Coulomb's law
Coulomb's law, otherwise known as Coulomb's inverse-square law, describes the electrostatic force acting between two charges. The force acts along the shortest line that joins the charges. It is repulsive if both charges have the same sign and attractive if they have opposite signs.
Coulomb's law is formulated as follows:
F = keq₁q₂/r²
where:
F is the electrostatic force between charges (in Newtons),
q₁ is the magnitude of the first charge (in Coulombs),
q₂ is the magnitude of the second charge (in Coulombs),
r is the shortest distance between the charges (in m),
ke is the Coulomb's constant. It is equal to 8.98755 × 10⁹ N·m²/C². This value is already embedded in the calculator - you don't have to remember it :)
Simply input any three values