The amount of power change if less work is done in more time"then the amount of power will decrease".
<u>Option: B</u>
<u>Explanation:</u>
The rate of performing any work or activity by transferring amount of energy per unit time is understood as power. The unit of power is watt
Here this equation showcase that power is directly proportional to the work but dependent upon time as time is inversely proportional to the power i.e as time increases power decreases and vice versa.
This can be understood from an instance, on moving a load up a flight of stairs, the similar amount of work is done, no matter how heavy but when the work is done in a shorter period of time more power is required.
If we pull an object vertically upwards then we need to apply a force which is equal in the magnitude of the weight of the object

now when we pull the same object upwards along an inclined plane with angle then we require a force which will balance the component of weight along the inclined
so it is given as

so as if we compare the two forces we can say that since the value of sine is always less than 1 for an angle less than 90 degree
so in the 2nd case when we pull the object along the inclined plane it will require less effort
so correct answer is
<em>A. reduce effort</em>
I think its all four of them could be wrong but try all four !!!!!!
Answer:
1. a
2. b
3. b
Explanation:
1.
Resistance is the property of a conductor to offer resistance to the flow of current. The lower the resistance better is the conductivity of wire.
We know that the resistance of a wire depends on several factor which are inter-connected by an equation as:
where:
R = resistance of the wire
length of the wire
cross sectional area of the wire
from the above relation we observe that

- Also when the temperature of the wire is significantly high then the lattice vibration cause obstruction in the path of the flowing charges and reduce the current flow.
2.
As the collision between the electrons and protons increases the speed of the flow of charges will decrease because the opposite charges attract each other and as we know that electrical current is the rate of flow of charge.
3.
Heating up of wire due to sunlight will cause lattice vibration in the conductor and will obstruct the movement of the charges which build up electric current, hence increasing the resistance of conductivity.