Answer:
6.44 × 10^10 N/C
Explanation:
Electric field due to the ring on its axis is given by
E = K q r / (r^2 + x^2)^3/2
Where r be the radius of ring and x be the distance of point from the centre of ring and q be the charge on ring.
r = 0.25 m, x = 0.5 m, q = 5 C
K = 9 × 10^9 Nm^2/C^2
E = 9 × 10^9 × 5 × 0.25 / (0.0625 + 0.25)^3/2
E = 6.44 × 10^10 N/C
Answer:
I'm pretty sure its 3m/s^2 for the acceleration but I don't know the force part sorry .
Explanation:
15m/s - 0m/s divided by 5 s = 3m/s
I'm no expert or anything so I could be wrong but this is the best I can give you. Sorry
Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °
Explanation:
Given that,
Initial speed of the car, u = 88 km/h = 24.44 m/s
Reaction time, t = 2 s
Distance covered during this time, 
(a) Acceleration, 
We need to find the stopping distance, v = 0. It can be calculated using the third equation of motion as :


s = 74.66 meters
s = 74.66 + 48.88 = 123.54 meters
(b) Acceleration, 


s = 37.33 meters
s = 37.33 + 48.88 = 86.21 meters
Hence, this is the required solution.
The best option is B) <span>7.0 × 10² newtons.
</span>If Earth attracts a person with a gravitational force of <span><span>7.0 × 10² </span>newtons,
the person attracts Earth with a gravitational force of 7.0 × 10² newtons.</span>