Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Answer:
No more information is needed
Explanation:
Radio waves are electromagnetic energy, lower frequency forms of this type of energy that includes light and cosmic rays on the high frequency end that we are able to detect. So in free space (vacuum), radio waves travel at their fastest velocity, the “speed of light”. The reason for the quotation marks is because when light or radio waves are propagating through matter, we observe them traveling more slowly.
Answer:
The magnitude of the electric field at the center of curvature of the arc is 3.87 N/C
Explanation:
Please see the attachments below
Keister since the fence after I sent the van the refractory period prevents double counting the same event where is after I passed a van they prevent sensing the patient stimulus it’s after