Define
u = 16 m/s, the vertical launch velocity
g = acceleration due to gravity, measured positive downward
s = vertical distance traveled
t = 21.2 s, total time of travel.
The vertical motion obeys the equation
s = ut - (1/2)gt²
When the rock is at ground level, s = 0.
Therefore
(16 m/s)(21.2 s) - 0.5*(g m/s²)*(21.2 s)² = 0
339.2 - 224.72g = 0
g = 1.5094 m/s²
Answer:
The acceleration due to gravity is 1.509 m/s² measured positive downward.
Answer:
10 seconds.
Explanation:
We can use a kinematic equation where we know the final velocity, initial velocity, acceleration, and need to determine the time <em>t: </em>
<em />
<em />
<em />
The initial velocit is 30 m/s, the final velocity is 0 m/s (as we stopped), and the acceleration is -3 m/s².
Substitute and solve for <em>t: </em>
<em />
<em />
<em />
Hence, it will take the car 10 seconds to come to a stop.
Answer:
A saturated solution
Explanation:
A saturated solution is one that contains the most amount of solute that can be dissolved in it at a given temperature
An example of a saturated solution is carbonated water, which readily gives off bubbles of carbon dioxide gas from areas within the solution to the region above the top surface of the gas in liquid solution
A saturation solution of salt in water can be created by continuing to dissolve salt in a given amount of water until it can no longer dissolve any more salt. However, heating the saturated salt solution, increases the amount of salt that can be dissolved.
Therefore, a solution that contains all of the solute it can normally hold at a given temperature is <u>a saturated solution</u>
When you add more water to the balloon, it makes it heavier. Therefore it would weigh the balloon down ( increasing mass) and increasing the energy to plummet down. So the answer is B.
Answer:
I believe it is B, not 100% sure though
Explanation: