Light having a dual nature and acting like both a wave and a particle is the correct statement in this scenario.
<h3>What is Light?</h3>
This refers to the electromagnetic radiation found in the electromagnetic spectrum that is perceived by the human eye and has a dual nature. It doesn't require a medium for its propagation unlike sound.
The dual nature of light is as a result of it behaving like a photon which is why it travels in straight lines.
It also behave like a wave because it undergoes processes such as reflection, refraction etc which are common to waves.
Read more about Light here brainly.com/question/1363382
#SPJ1
D. Because the moons shadow during a total lunar eclipse is tinnier than the earth.
Heat transfer in a closed system is the addition of changes in internal energy and the total amount of work done by it. The final energy of the system is 35.5kJ.
<h3>What is heat transfer? </h3>
Heat transfer is the transfer of heat energy due to temperature differences.
The paddle-wheel paintings are quantities of workdone, 500 N.m or 0.5kJ.
The preliminary (initial) power of the device is 10 kJ.
Total warmness transferred in the course of the method is 30 kJ
Total warmness misplaced in the course of the method to the encompassing air is 5 kJ.
The energy of the system is given as:
The energy of the system = Energy in - Energy out
The energy of the system = Initial energy + Energy transferred + Work done - Energy lost
Energy of the system = 10 + 30 + 0.5 - 5 kJ
Energy of the system = 35.5 kJ
Read more about energy:
brainly.com/question/13881533
#SPJ1
According to newton's 3rd law of motion,
For every action, there is equal and opposite reaction. So if we move a body against a rough surface, there were be reaction against the force applied.
So using conservation of energy, we know:
Work done to move a body = Work done against Friction
So, Force applied * distance moved = coefficient of Friction * Normal Reaction * distance moved
For a body moving against a normal surface, Normal Reaction (R) = mg
or, mass * acceleration * distance (s) = ∪ * R * distance(s)
or, mass * (v^2/2s) = ∪ * mass * gravity
Now, s = stopping distance = v²/ 2∪g
so, using given value,∪=0.05,
s = v2/2*0.05*g
We know, g = 10, so s = v²/(2*0.05*10) = v²
where v = initial velocity
Answer:
The average speed is 1 m/s
The average velocity is 0
Explanation:
Given;
length of the pool, L = 50 m
time taken for the motion, t = 100 s
The total distance = 50 m + 50 m
The total distance = 100 m
The average speed = total distance / total time
= 100 / 100
= 1 m/s
The average velocity = change in displacement / change in time
change in displacement = 50 m - 50 m = 0
The average velocity = 0 / 100
The average velocity = 0