Answer:
<h3>The answer is 7.85 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

volume = final volume of water - initial volume of water
volume = 13.91 - 12 = 1.91 mL
We have

We have the final answer as
<h3>7.85 g/mL</h3>
Hope this helps you
Answer:
increased
Explanation:
Consuming a compound increases the concentration. When you increase the concentration, the rate constant for that reaction also increases.
I need details to solve for you
Answer:
C
Explanation:
If you think about it treated sewage would have a certain place that it is put therefore C is the answer
Answer:
1.26 M
Explanation:
The ion nitrate is NO₃⁻ and the Barium is from group 2 so it forms the ion Ba²⁺, so the barium nitrate has the formula: Ba(NO₃)₂. The molar masses are: Ba: 137 g/mol, N = 14 g/mol, O = 16 g/mol, so the molar mass of barium nitrate is:
137 + 2x(14 + 3x16) = 199 g/mol
The number of moles is the mass divided by the molar mass, so:
n = 25.1/199 = 0.126 mol of Ba(NO₃)₂
In 1 mol of the salt, there are 2 moles of NO₃⁻, so the number of moles of nitrate is 0.252 mol. Nitrates formed with ammonium (that can react when the solid dissolves) and with elements from group 1 and 2 are completely soluble in water. So, the moles of nitrate will remain 0.252 mol.
The molarity is the number of moles divided by the volume (0.2 L):
[NO₃⁻]= 0.252/0.2 = 1.26 M