Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
s = 1 orbital
p = 3 orbitals
d = 5 orbitals
f = 7 orbitals
For n = 4
l = 0 to (n-1) = 0 to 3 = (4s , 4p , 4d , 4f)
Number of subshells = 4
Number of orbitals = 1 + 3 + 5 + 7 = 16
The maximum number of electrons the n = 4 shell can contain:
Each orbital can holds upto two electrons, then 16 orbitals will have :

32 is the maximum number of electrons the n = 4 shell can contain
Answer:
yo try and search it on Google
I think the like term is 6 hope this is right
Remark
The balance numbers in front of Ag and AgNO3 are both 2. That number is in moles.
Rule: if the moles are the same in the equation, then whatever you are given for one, will be the same for the other. So you have 0.854 moles of Ag. You will also have 0.854 moles of AgNO3
Answer: 0.854 <<<<<
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>