Answer:
in the simple cubic unit cell, the centers of ____Eight________ identical particles define the ____corners________ of a cube. The particles do touch along the cube's _____edges _______ but do not touch along the cube's ___ diagonally_________ or through the center. There is/are __eight__________ particle per unit cell and the coordination number is _____six_______ .
Answer:
usage of trills and vibrato
Explanation:
earlier music used trills while later styles would use vibrato.
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
Answer:
It increases when the concentration of reactants increases.
Explanation:
Increasing the concentration of reactants in a reaction increases the amount of reacting molecules or ions which would increase the rate of a chemical reaction. Reaction rate does depend on temperature. Increasing temperature also increases reaction rate because particles move faster with the increased kinetic energy to produce more collisions.
Answer:
- <u>2.59 × 10⁻⁷ m = 259 nm</u>
Explanation:
You need to calculate the wavelength of a photon with an energy equal to 463 kJ/mol, which is the energy to break an oxygen-hydrogen atom.
The energy of a photon and its wavelength are related by the Planck - Einstein equation:
Where:
- h = Planck constant (6.626 × 10⁻³⁴ J . s) and
- ν = frequency of the photon.
And:
Where:
- c = speed of light (3.00 × 10⁸ m/s in vacuum)
- λ = wavelength of the photon
Thus, you can derive:
Solve for λ:
Before substituting the values, convert the energy, 463 kJ/ mol, to J/bond
- 463 kJ/ mol × 1,000 J/kJ × 1 mol / 6.022 × 10 ²³ atom × 1 bond / atom
= 7.69×10²³ J / bond
Substitute the values and use the energy of one bond:
- λ = 6.626 × 10⁻³⁴ J . s × 3.00 × 10⁸ m/s / 7.69×10²³ J = 2.59 × 10⁻⁷ m
The wavelength of light is usually shown in nanometers:
- 2.59 × 10⁻⁷ m × 10⁹ nm / m = 259 nm ← answer