The effect that it makes is it turns it into acidic
Answer:
The answer to your question is 1.36 x 10²³ atoms
Explanation:
Data
number of atoms = ?
mass of the sample = 34.2 g
Molecule = Cl₂O₅
Process
1.- Calculate the molar mass of Cl₂O₅
Cl₂O₅ = (35.5 x 2) + (16 x 5) = 71 + 80 = 151 g
2.- Calculate the atoms of Cl₂O₅
151 g of Cl₂O₅ ---------------- 6 .023 x 10²³ atoms
34.2 g of Cl₂O₅ ------------ x
x = (34.2 x 6.023 x 10²³) / 151
x = 1.36 x 10²³ atoms
Answer:
Active transport
Explanation:
Sodium-potassium pumps are examples of Active type of cellular transport. Sodium potassium pump exchanges sodium ions from potassium ions through the plasma membrane of animal cells.
Whereas Active transport can be defined as movement of ions and molecules across a cell membrane to the region of higher concentration with the help of enzymes and energy.
The correct answer here is B - when chlorine accepts an electron to
complete its octet and becomes a chlorion ion it becomes an Anion. An
anion is a negatively charged ion. Chloride ions are an important
electrolyte within the body.
Answer:
Ka = 4.76108
Explanation:
- CO(g) + 2H2(g) ↔ CH3OH(g)
∴ Keq = [CH3OH(g)] / [H2(g)]²[CO(g)]
[ ]initial change [ ]eq
CO(g) 0.27 M 0.27 - x 0.27 - x
H2(g) 0.49 M 0.49 - x 0.49 - x
CH3OH(g) 0 0 + x x = 0.11 M
replacing in Ka:
⇒ Ka = ( x ) / (0.49 - x)²(0.27 - x)
⇒ Ka = (0.11) / (0.49 - 0.11)² (0.27 - 0.11)
⇒ Ka = (0.11) / (0.38)²(0.16)
⇒ Ka = 4.76108