The other two bulbs stay lit with the same brightness.
The physics is involved in many daily activities,
Forrxample,
1. At the time of wake up when the alarm clock rings, the sound from the alarm clock is studied by using physics, the angular motion of the pins on the clock.
2. The oscillation and time period of the minute, second and hour hand.
3. The tranformation of our energy from food to the energy for motion of our body.
4. The balance of our house equipments on the tab
Answer:
total stretch of the double-length spring will be 20 cm
Explanation:
given data
length x1 = 10 cm
mass = 1 kg
mass = double = 2 kg
to find out
the total stretch of the double-length spring will be
solution
we can say here spring constant is
k = mg ............1
k is spring constant and m is mass and g is acceleration due to gravity
so for in 1st case and 2nd case with 1 kg mass and 2 kg mass
kx1 = mg .........................2
and
kx2 = 2mg ........................3
x is length
so from equation 2 and 3



x2 = 20
so total stretch of the double-length spring will be 20 cm
3.tool used by frank edwards was thrown out the window by the feds
The traditional forecast process employed by most NMHSs involves forecasters producing text-based, sensible, weather-element forecast products (e.g. maximum/minimum temperature, cloud cover) using numerical weather prediction (NWP) output as guidance. The process is typically schedule-driven, product-oriented and labour-intensive. Over the last decade, technological advances and scientific breakthroughs have allowed NMHSs’ hydrometeorological forecasts and warnings to become much more specific and accurate.
As computer technology and high-speed dissemination systems evolved (e.g. Internet), National Weather Service (NWS) customers/partners were demanding detailed forecasts in gridded, digital and graphic formats. Traditional NWS text forecast products limit the amount of additional information that can be conveyed to the user community. The concept of digital database forecasting provides the capability to meet customer/partner demands for more accurate, detailed hydrometeorological forecasts. Digital database forecasting also offers one of the most exciting opportunities to integrate PWS forecast dissemination and service delivery, which most effectively serves the user community.
Both the US National Oceanic and Atmospheric Administration(NOAA)/National Weather Service and Environment Canada are currently using digital database forecasting technology to produce routine forecasts. The Australian Bureau of Meteorology is in the process of evaluating and developing an implementation plan for database forecasting using the NOAA/NWS National Digital Forecast Database approach.