Answer:
meters
Explanation:
I'm not positive if this is correct, your teacher may be looking for a broader answer so possibly just 'distance'. Hope this helps! <3
Answer:
a) a = 3.06 10¹⁵ m / s
, b) F= 1.43 10⁻¹⁰ N, c) F_total = 14.32 10⁻²⁶ N
Explanation:
This exercise will average solve using the moment relationship.
a ) let's use the relationship between momentum and momentum
I = ∫ F dt = Δp
F t = m
- m v₀
F = m (v_{f} -v₀o) / t
in the exercise indicates that the speed module is the same, but in the opposite direction
F = m (-2v) / t
if we use Newton's second law
F = m a
we substitute
- 2 mv / t = m a
a = - 2 v / t
let's calculate
a = - 2 4.59 10²/3 10⁻¹³
a = 3.06 10¹⁵ m / s
b) F= m a
F= 4.68 10⁻²⁶ 3.06 10¹⁵
F= 1.43 10⁻¹⁰ N
c) if we hit the wall for 1015 each exerts a force F
F_total = n F
F_total = n m a
F_total = 10¹⁵ 4.68 10⁻²⁶ 3.06 10¹⁵
F_total = 14.32 10⁻²⁶ N
Answer:
The kinetic energy of the bullet is 5.4 × 10³ J
Explanation:
Hi there!
The equation of kinetic energy is the following:
KE = 1/2 · m · v²
Where:
KE = kinetic energy.
m = mass of the bullet.
v = speed of the bullet.
Let´s convert the mass unit to kg so that our result is in Joules:
64 g · ( 1 kg / 1000 g) = 0.064 kg
Then, the kinetic energy will be the following:
KE = 1/2 · 0.064 kg · (411 m/s)²
KE = 5.4 × 10³ J
Answer:
B. Geosphere
A. Biosphere
A. Atmosphere
Explanation:
Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.
Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.
The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.
Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.
Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!