1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
3 years ago
6

A weightless spring is stretched 10 cm by a suspended 1-kg block. If two such springs are used to suspend the block, one spring

above the other, to effectively provide one double-length spring, then the total stretch of the double-length spring will be
Physics
1 answer:
leva [86]3 years ago
7 0

Answer:

total stretch of the double-length spring will be 20 cm

Explanation:

given data

length x1 = 10 cm

mass = 1 kg

mass = double = 2 kg

to find out

the total stretch of the double-length spring will be

solution

we can say here spring constant is

k = mg    ............1

k is spring constant and m is mass and g is acceleration due to gravity

so for in 1st case and 2nd case with 1 kg mass and 2 kg mass

kx1 = mg   .........................2

and

kx2 = 2mg   ........................3

x is length

so from equation 2 and 3

\frac{kx1}{kx2}= \frac{1mg}{2mg}

\frac{x1}{x2} = \frac{1}{2}

\frac{10}{x2} = \frac{1}{2}

x2 = 20

so total stretch of the double-length spring will be 20 cm

You might be interested in
Two balls of equal size are dropped from the same height from the roof of a building. One ball has twice the mass of the other.
frutty [35]

Answer:

The kinetic energy of the more massive ball is greater by a factor of 2.

Explanation:

By conservation of energy, we know that the initial energy = final energy. At first, the balls are dropped from a height with no initial velocity so their initial energy is all potential energy. When they reach the bottom, all their energy is kinetic energy. So all of their energy is changed from potential to kinetic energy. This means that the ball with greater potential energy will have a greater kinetic energy.

Potential energy = mgh. Since g = gravity is a constant and h = height is the same, the only difference is mass. Since mass is directly proportional to potential energy, the greater the mass, the greater the potential energy, so the more massive ball has a greater initial potential energy and will have a greater kinetic energy at the bottom.

Additionally, let B1 = lighter ball with mass m and let B2 = heavier ball with mass m2. Since we know that intial potential energy = final kinetic energy. We can rewrite it as potential energy = kinetic energy = mass * gravity constant * height. For B1, it is mgh and for B2 it is 2mgh, so B2's kinetic energy is twice that of B1.

3 0
3 years ago
The magnetic coils of a tokamak fusion reactor are in the shape of a toroid having an inner radius of 0.700 m and an outer radiu
iragen [17]

Answer:

(a) 11.3 T

(b) 6.09 T

Explanation:

Current, I = 14 kA = 14000 A

number of turns, N = 900

inner radius, r = 0.7 m

outer radius, R = 1.3 m

The magnetic field due to a circular coil is given by

B = \frac{\mu o}{4\pi}\times \frac{2 N\pi I}{R}

(a) The magnetic field due to the inner radius is

B = 10^{-7}\times \frac{2\times 900\times 3.14\times 14000}{0.7}\\\\B = 11.3 T

(b) The magnetic field due to the outer radius is

B = 10^{-7}\times \frac{2\times 900\times 3.14\times 14000}{1.3}\\\\B = 6.09 T

5 0
3 years ago
As the frequency of a wave increases the wavelength.
zaharov [31]

Answer:

decreases

Explanation:

Remeber:

There is always inverse relation between frequency and wavelength.

So if one of them increases, other decreases and vice-versa.

f ∝ 1 / λ

4 0
2 years ago
Read 2 more answers
A jet is travelling at a speed of 1200 km/h and drops cargo from a height of 2.5 km above the ground Calculate the time it takes
OLEGan [10]

a) Time of flight: 22.6 s

To calculate the time it takes for the cargo to reach the ground, we just consider the vertical motion of the cargo.

The vertical position at time t is given by

y(t) = h +u_y t - \frac{1}{2}gt^2

where

h = 2.5 km = 2500 m is the initial height

u_y = 0 is the initial vertical velocity of the cargo

g = 9.8 m/s^2 is the acceleration of gravity

The cargo reaches the ground when

y(t) = 0

So substituting it into the equation and solving for t, we find the time of flight of the cargo:

0 = h - \frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2500)}{9.8}}=22.6 s

b) 7.5 km

The range travelled by the cargo can be calculated by considering its horizontal motion only. In fact, the horizontal motion is a uniform motion, with constant velocity equal to the initial velocity of the jet:

v_x = 1200 km/h \cdot \frac{1000 m/km}{3600 s/h}=333.3 m/s

So the horizontal distance travelled is

d=v_x t

And if we substitute the time of flight,

t = 22.6 s

We find the range of the cargo:

d=(333.3)(22.6)=7533 m = 7.5 km

7 0
3 years ago
How are the electric field lines around a positive charge affected when a second positive charge is near it? The field lines com
timofeeve [1]
The answer would be D hope it helps and sorry if it is wrong.  :)
3 0
3 years ago
Read 2 more answers
Other questions:
  • Yolanda has decided she is going to be a nurse. What is the next step she should take to make her career goals a reality? a. Cre
    5·3 answers
  • Some magnets have just one pole <br> Truth or false ?
    8·2 answers
  • Mass is measured using _____.
    7·2 answers
  • What information is necessary to calculate a confidence interval?
    12·1 answer
  • Is compound a subatomic particle
    7·1 answer
  • Can a flashlight cause skin cancer
    7·1 answer
  • What is the magnitude of the detected sound frequency shift from 170 Hz during the projectile flight described in the passage?
    9·1 answer
  • The count rate of a radioactive source decreases from 1600 counts per minute to 400 counts per minute in 12 hours. What is the h
    12·1 answer
  • (a) Find the speed of waves on a violin string of mass 717 mg and length 24.3 cm if the fundamental frequency is 980 Hz. (b) Wha
    11·1 answer
  • Vary the sled’s height and mass. Observe the effect of each change on the potential energy of the sled.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!