(a) The momentum of the proton is determined as 5.17 x 10⁻¹⁸ kgm/s.
(b) The speed of the proton is determined as 3.1 x 10⁹ m/s.
<h3>
Momentum of the proton</h3>
The momentum of the proton is calculated as follows;
K.E = ¹/₂mv²
where;
- m is mass of proton = 1.67 x 10⁻²⁷ kg
- v is speed of the proton = ?
<h3>Speed of the proton</h3>
v² = 2K.E/m
v² = (2 x 50 x 10⁹ x 1.602 x 10⁻¹⁹ J)/(1.67 x 10⁻²⁷)
v² = 9.6 x 10¹⁸
v = 3.1 x 10⁹ m/s
<h3>Momentum of the proton</h3>
P = mv = (1.67 x10⁻²⁷ x 3.1 x 10⁹) = 5.17 x 10⁻¹⁸ kgm/s
Learn more about momentum here: brainly.com/question/7538238
#SPJ4
A. Forced vibrations, such as those between a tuning fork and a large cabinet surface, result in a much lower sound than was produced by the original vibrating body.
Answer:
The new separation distance between adjacent bright fringes will be <u>4 mm</u>
Explanation:
Since, the distance between adjacent bright fringes is given by the formula:
Δx₁ = λL/d = 2 mm -------- eqn (1)
where,
Δx = Distance between adjacent bright fringes
λ = wavelength of light = constant for both cases
L = Distance between the slits and the screen
d = slit separation
Now, for the second case:
Slit Separation = d/2
Therefore,
Δx₂ = λL/(d/2)
Δx₂ = 2(λL/d)
using eqn (1), we get:
Δx₂ = 2 Δx₁
Δx₂ = 2(2 mm)
<u>Δx₂ = 4 mm</u>
Answer:
23
21.7391304348 m
Explanation:
L = Initial length = 500 m
= Change in temperature = 40-(-35)
= Coefficient of thermal expansion = 
Change in length is given by

The change in length is 0.45 m
The number of joints would be

The number of joints is 23
Each bridge section length would be

The length of each bridge section would be 21.7391304348 m
A. Because there is still electricity going through the appliance even though it's turned off