Answer:
125.83672 seconds
Explanation:
P = Power of the horse = 1 hp = 746 W (as it is not given we have assumed the horse has the power of 1 hp)
m = Mass of professor = 103 kg
g = Acceleration due to gravity = 9.8 m/s²
h = Height of professor = 93 m
Work done would be equal to the potential energy

Power is given by

The time taken by the horse to pull the professor is 125.83672 seconds
9. Compounds can form from two nonmetals by sharing their electrons in a
C) covalent
11. An atom that has an excess positive or negative electrical charge caused by the loss or addition of an electron is called a(n) ______.
B) ion
5 is either A or C
<span>Visible satellite images are like photos which are dependent on visible
light from the sun so they work best during the day. The sensor works by
detecting radiation within the range that wavelength is visible. Because of
this, the rays is usually seen as reaching earth from the East. </span>
Answer:
- The procedure is: solve the quadratic equation for
.
Explanation:
This question assumes uniformly accelerated motion, for which the distance d a particle travels in time t is given by the general equation:
That is a quadratic equation, where the independent variable is the time
.
Thus, the procedure that will find the time t at which the distance value is known to be D is to solve the quadratic equation for
.
To solve it you start by changing the equation to the general form of the quadratic equations, rearranging the terms:
Some times that equation may be solved by factoring, and always it can be solved by using the quadratic formula:
Where:

That may have two solutions. Some times one of the solution makes no physical sense (for example time cannot be negative) but others the two solutions are valid.