Answer:
approximately 860 light-years (260 pc) from Earth
Answer: hydrolysis of intermediate palmitoyl Co A ,with loss of labeled CoA.before reaching the matrix gives the answer
Explanation:
This is because when the labeled Coenzyme A of the Plamitate combines as Palmitoy-CoA with oxaloacetate to form intermediate (palmitoyl-CoA )in Citric Acid cycle:
CoA is hydrolysed with loss of the labelled CoA which returns to the cystosol. Therefore, the labelled CoA does not reach the matrix of the mitochondrial,but returns to the Cystosol.
Consequently, the CoA in the Cystosol will be labelled in palmitoylCoA and the one in the matrix of the liver mitochondrial will be non radioactive(,will not labelled).
On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.
Answer:
The phrase "eating like a bird” is inaccurate because the eating habits of birds and the amount of food they consume are a function of their size, activity and metabolism, amount of food that would be insufficient for one person.
Explanation:
The phrase "eating like a bird" establishes a comparison between the feeding of a bird and that of a person, referring to the small amount of food that birds consume.
In fact, birds consume food according to the high energy demand of flying, its weight, size, activity and metabolism. A real comparison would establish that birds even eat more than people.
The feeding of each species is different, and the phrase is inaccurate because it only states that a person who eats little food (less than their requirements) is consuming what would really be enough for a bird.
Learn more:
brainly.com/question/9066680
He diffuses faster i have already done that lab