-4/2=-2
(-2)^2=4
the blank is +4
x^2-4x+4
factored
(x-2)^2
Answer: The answer B
Step-by-step explanation: so the answer i got was x 5 so its B
Answer:
93.32% probability that a randomly selected score will be greater than 63.7.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a randomly selected score will be greater than 63.7.
This is 1 subtracted by the pvalue of Z when X = 63.7. So



has a pvalue of 0.0668
1 - 0.0668 = 0.9332
93.32% probability that a randomly selected score will be greater than 63.7.
Answer:
34 degrees
Step-by-step explanation:
Angle K is similar to Angle R, and Angle R is 34 degrees. So Angle K is also 34 degrees.
Hope it helps!
Answer:
See below.
Step-by-step explanation:
Let's look at the cost for members (C1) first. Let x be the number of visits.
C1(x) = 12 + 8x
For non-members (C2), we can do the same.
C2(x) = 10x
You can graph these two equations.
x C1 C2
0 12 0
1 20 10
2 28 20
3 36 30
4 44 40
5 52 50
6 60 60
7 68 70
Let's make the two equations equal, to find out where the benefit is the same.
12 + 8x = 10x
2x = 12
x = 6
Up to 5 visits, the non-member cost is better. At 6 visits, there's the same price. For more than 6 visits, the member cost is better.