I hope you understood
hit me up if you have any other questions :>
Answer: Taking measurements
Explanation:
Apex
The balanced chemical equation for the formation ammonia is
N2(g) + 3H2(g) ----> 2NH3(g) .
The balanced chemical equations explains that the same number of each element exist as reactants and products. The coefficients in a balanced equation must be the simplest whole number ratio. Mass is always conserved in chemical reactions.
For the formation of ammonia, the chemical equation is
N2(g) + H2(g) ----> NH3(g)
Balancing the chemical reaction, we can write,
N2(g) + 3H2(g) ----> 2NH3(g) .
This equation shows two nitrogen entering the reaction together and two hydrogens entering the reaction together. Since NH3 is multiplied by a coefficient of 2 there are now 2 nitrogen and 6 hydrogens. The 6 hydrogens come from the 2 multiplied by the subscript of 3. This is the balanced chemical reaction.
To learn more about Balanced chemical equation please visit:
brainly.com/question/14072552
#SPJ4
The formula or chemical formula of a compound is same irrespective of source / mode of synthesis . Thus if a sample of compound has one carbon atom for every two atoms of oxygen (CO2), the formula will remains the same
So the answer is that for all other samples the compound X should hold this ration true.
Answer:
1.78 mol
Explanation:
Step 1: Write the balanced equation
CaC₂ + H₂O ⇒ C₂H₂ + CaO
Step 2: Calculate the moles corresponding to 46.3 g of C₂H₂
The molar mass of C₂H₂ is 26.04 g/mol.
46.3 g × 1 mol/26.04 g = 1.78 mol
Step 3: Calculate the moles of H₂O required to form 1.78 moles of C₂H₂.
The molar ratio of H₂O to C₂H₂ is 1:1. The moles of H₂O required are 1/1 × 1.78 mol = 1.78 mol.