Answer:
Bl^2+4Bl*Fh
Step-by-step explanation:
I'm not quite certain what "draw a net" means here. But for part b, we are doing the formula. The bottom part is a square(assumingly so take this with a grain of salt), thus making the base equal to 3*3 cm or 9 cm^2. The triangular faces are each 3*2.24 cm or 6.72 cm^2. We then multiply this by 4 to get 26.88. Thus, the equation is Bl^2(Base length squared)+Bl*Fh(Face height, I forgot the official name sorry about that)*4 for part b.
Answer:
The lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Step-by-step explanation:
This is a problem of optimization.
We have to minimize the time it takes for the lifeguard to reach the child.
The time can be calculated by dividing the distance by the speed for each section.
The distance in the shore and in the water depends on when the lifeguard gets in the water. We use the variable x to model this, as seen in the picture attached.
Then, the distance in the shore is d_b=x and the distance swimming can be calculated using the Pithagorean theorem:

Then, the time (speed divided by distance) is:

To optimize this function we have to derive and equal to zero:
![\dfrac{dt}{dx}=\dfrac{1}{4}+\dfrac{1}{1.1}(\dfrac{1}{2})\dfrac{2x-120}{\sqrt{x^2-120x+5200}} \\\\\\\dfrac{dt}{dx}=\dfrac{1}{4} +\dfrac{1}{1.1} \dfrac{x-60}{\sqrt{x^2-120x+5200}} =0\\\\\\ \dfrac{x-60}{\sqrt{x^2-120x+5200}} =\dfrac{1.1}{4}=\dfrac{2}{7}\\\\\\ x-60=\dfrac{2}{7}\sqrt{x^2-120x+5200}\\\\\\(x-60)^2=\dfrac{2^2}{7^2}(x^2-120x+5200)\\\\\\(x-60)^2=\dfrac{4}{49}[(x-60)^2+40^2]\\\\\\(1-4/49)(x-60)^2=4*40^2/49=6400/49\\\\(45/49)(x-60)^2=6400/49\\\\45(x-60)^2=6400\\\\](https://tex.z-dn.net/?f=%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%2B%5Cdfrac%7B1%7D%7B1.1%7D%28%5Cdfrac%7B1%7D%7B2%7D%29%5Cdfrac%7B2x-120%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%5C%5C%5C%5C%5C%5C%5Cdfrac%7Bdt%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B4%7D%20%2B%5Cdfrac%7B1%7D%7B1.1%7D%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D0%5C%5C%5C%5C%5C%5C%20%20%5Cdfrac%7Bx-60%7D%7B%5Csqrt%7Bx%5E2-120x%2B5200%7D%7D%20%3D%5Cdfrac%7B1.1%7D%7B4%7D%3D%5Cdfrac%7B2%7D%7B7%7D%5C%5C%5C%5C%5C%5C%20x-60%3D%5Cdfrac%7B2%7D%7B7%7D%5Csqrt%7Bx%5E2-120x%2B5200%7D%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B2%5E2%7D%7B7%5E2%7D%28x%5E2-120x%2B5200%29%5C%5C%5C%5C%5C%5C%28x-60%29%5E2%3D%5Cdfrac%7B4%7D%7B49%7D%5B%28x-60%29%5E2%2B40%5E2%5D%5C%5C%5C%5C%5C%5C%281-4%2F49%29%28x-60%29%5E2%3D4%2A40%5E2%2F49%3D6400%2F49%5C%5C%5C%5C%2845%2F49%29%28x-60%29%5E2%3D6400%2F49%5C%5C%5C%5C45%28x-60%29%5E2%3D6400%5C%5C%5C%5C)

As
, the lifeguard should run across the shore a distance of 48.074 m before jumpng into the water in order to minimize the time to reach the child.
Answer:
5
Step-by-step explanation:
The mean is the same as the average value of a data set and is found using a calculation. Add up all of the numbers and divide by the number of numbers in the data set.